Citation: | Shijie HUANG, Yi LIU, Yong ZHAO, Youlai XU, Fuchang LIN, Hua LI, Qin ZHANG, Liuxia LI. Stress wave analysis of high-voltage pulse discharge rock fragmentation based on plasma channel impedance model[J]. Plasma Science and Technology, 2023, 25(6): 065502. DOI: 10.1088/2058-6272/acb136 |
High-voltage pulse discharge (HVPD) rock fragmentation controls a plasma channel forming inside the rock by adjusting the electrical parameters, electrode type, etc. In this work, an HVPD rock fragmentation test platform was built and the test waveforms were measured. Considering the effects of temperature, channel expansion and electromagnetic radiation, the impedance model of the plasma channel in the rock was established. The parameters and initial values of the model were determined by an iterative computational process. The model calculation results can reasonably characterize the development of the plasma channel in the rock and estimate the shock wave characteristics. Based on the plasma channel impedance model, the temporal and spatial distribution characteristics of the radial stress and tangential stress in the rock were calculated, and the rock fragmentation effect of the HVPD was analyzed.
The authors gratefully acknowledge the support of National Natural Science Foundation of China (No. 52177144).
[1] |
Liu Y et al 2017 Phys. Plasmas 24 043510 doi: 10.1063/1.4980848
|
[2] |
Andres U et al 2001 Powder Technol. 114 40 doi: 10.1016/S0032-5910(00)00260-6
|
[3] |
Biela J et al 2009 IEEE Trans. Dielectr. Electr. Insul. 16 1093 doi: 10.1109/TDEI.2009.5211860
|
[4] |
Liu X H, Liu S Y and Ji H F 2015 Powder Technol. 286 181 doi: 10.1016/j.powtec.2015.07.044
|
[5] |
Shi X M et al 2020 Geomech. Geophys. Geo-Energy Geo-Resour. 6 25 doi: 10.1007/s40948-020-00143-3
|
[6] |
Ma Z J et al 2022 IEEE Trans. Antennas Propag. 70 4243 doi: 10.1109/TAP.2021.3138425
|
[7] |
Lisitsyn I V et al 1999 Drilling and demolition of rocks by
pulsed power 12th IEEE Int. Pulsed Power Conf. (Monterey,
CA: IEEE) (https://doi.org/10.1109/PPC.1999.825439)
|
[8] |
Razavian S M et al 2015 Int. J. Min. Sci. Technol. 25 473 doi: 10.1016/j.ijmst.2015.03.023
|
[9] |
Liu S W et al 2019 Phys. Plasmas 26 023522 doi: 10.1063/1.5064847
|
[10] |
Li C P et al 2019 Shock Vib. 2019 7149680 doi: 10.1155/2019/7149680
|
[11] |
Ushakov V Y, Vajov V F and Zinoviev N T 2019 Electro-Discharge Technology for Drilling Wells and Concrete Destruction (Berlin: Springer)
|
[12] |
Ito M et al 2009 Int. J. Miner. Process. 92 7 doi: 10.1016/j.minpro.2009.02.007
|
[13] |
Dai J 2002 Dynamic Behaviors and Blasting Theory of Rock (Beijing: Metallurgical Industry Press) (in Chinese)
|
[14] |
Burkin V V, Kuznetsova N S and Lopatin V V 2009 J. Phys. D: Appl. Phys. 42 185204 doi: 10.1088/0022-3727/42/18/185204
|
[15] |
Burkin V V, Kuznetsova N S and Lopatin V V 2009 J. Phys. D: Appl. Phys. 42 235209 doi: 10.1088/0022-3727/42/23/235209
|
[16] |
Cho S H et al 2016 Rock Mech. Rock Eng. 49 3841 doi: 10.1007/s00603-016-1031-z
|
[17] |
Kuznetsova N S, Lopatin V V and Yudin A S 2014 J. Phys. Conf. Ser. 552 012029 doi: 10.1088/1742-6596/552/1/012029
|
[18] |
Andres U, Timoshkin I and Soloviev M 2001 Miner. Process. Extr. Metall. 110 149 doi: 10.1179/mpm.2001.110.3.149
|
[19] |
Bluhm H et al 2000 IEEE Trans. Dielectr. Electr. Insul. 7 625 doi: 10.1109/94.879358
|
[20] |
Bluhm H 2006 Pulsed Power Systems (Berlin: Springer)
|
[21] |
Kushner M J, Kimura W D and Byron S R 1985 J. Appl. Phys. 58 1744 doi: 10.1063/1.336023
|
[22] |
Zhao Y et al 2022 J. Appl. Phys. 131 083301 doi: 10.1063/5.0079162
|
[23] |
Robinson J W 1973 J. Appl. Phys. 44 76 doi: 10.1063/1.1661944
|
[24] |
Frisch D H, Smith J H and Friedman F L 1963 Am. J. Phys. 31 889 doi: 10.1119/1.1969154
|
[25] |
Kratel A W H 1996 Pulsed power discharges in water PhD Thesis California Institute of Technology, Pasadena, USA
|
[26] |
Warne L K, Jorgenson R E and Lehr J M 2005 Resistance of a water spark No. SAND 2005-6994 Albuquerque, Sandia Report Sandia National Laboratories SAND2005-6994
|
[27] |
Timoshkin I V et al 2006 J. Phys. D: Appl. Phys. 39 4808 doi: 10.1088/0022-3727/39/22/011
|
[28] |
Lisitsyn I V 1998 J. Appl. Phys. 84 6262 doi: 10.1063/1.368946
|
[29] |
Inoue H 1999 Jpn. J. Appl. Phys. 38 6502 doi: 10.1143/JJAP.38.6502
|
[30] |
Li C P 2018 Energies 11 2461 doi: 10.3390/en11092461
|
[31] |
Xiong L L et al 2020 J. Phys. D: Appl. Phys. 53 185502 doi: 10.1088/1361-6463/ab7328
|
[32] |
Zhang Y Z et al 2014 Chin. J. Rock Mech. Eng. 33 3144 (in Chinese)
|
[33] |
Zhao Y et al 2022 J. Appl. Phys. 132 104901 doi: 10.1063/5.0100904
|
[34] |
Stehfest H 1970 Commun. ACM 13 624 doi: 10.1145/355598.362787
|
[35] |
Yilmaz O and Unlu T 2013 Tunnell. Undergr. Space Technol. 38 266 doi: 10.1016/j.tust.2013.07.007
|
[36] |
Xiong L L et al 2020 J. Phys. D: Appl. Phys. 53 495502 doi: 10.1088/1361-6463/abacee
|
[37] |
Zong Q 1994 Blasting 15 (in Chinese) 15
|
[38] |
Wang W L 1984 Drilling and Blasting (Beijing: China Coal Industry Publishing House) (in Chinese)
|
[39] |
Dai J and Yang Y Q 2000 J. China Univ. Mining Technol. 29 496 (in Chinese) doi: 10.3321/j.issn:1000-1964.2000.05.013
|
[1] | Baowei WANG (王保伟), Chao WANG (王超), Shumei YAO (姚淑美), Yeping PENG (彭叶平), Yan XU (徐艳). Plasma-catalytic degradation of tetracycline hydrochloride over Mn/γ-Al2O3 catalysts in a dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2019, 21(6): 65503-065503. DOI: 10.1088/2058-6272/ab079c |
[2] | Xue LI (李雪), Renwu ZHOU (周仁武), Bo ZHANG (张波), Rusen ZHOU (周儒森), Ken OSTRIKOV, Zhi FANG (方志). Design and characteristics investigation of a miniature low-temperature plasma spark discharge device[J]. Plasma Science and Technology, 2019, 21(5): 54005-054005. DOI: 10.1088/2058-6272/aaf111 |
[3] | Lin WANG (王林), Junkang YAO (姚军康), Zheng WANG (王政), Hongqiao JIAO (焦洪桥), Jing QI (齐静), Xiaojing YONG (雍晓静), Dianhua LIU (刘殿华). Fast and low-temperature elimination of organic templates from SBA-15 using dielectric barrier discharge plasma[J]. Plasma Science and Technology, 2018, 20(10): 101001. DOI: 10.1088/2058-6272/aad547 |
[4] | Tao ZHU (竹涛), Ruonan WANG (王若男), Wenjing BIAN (边文璟), Yang CHEN (陈扬), Weidong JING (景伟东). Advanced oxidation technology for H2S odor gas using non-thermal plasma[J]. Plasma Science and Technology, 2018, 20(5): 54007-054007. DOI: 10.1088/2058-6272/aaae62 |
[5] | Pan CHEN (陈攀), Jun SHEN (沈俊), Tangchun RAN (冉唐春), Tao YANG (杨涛), Yongxiang YIN (印永祥). Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma[J]. Plasma Science and Technology, 2017, 19(12): 125505. DOI: 10.1088/2058-6272/aa8903 |
[6] | Pascal ANDRE, William BUSSIERE, Alain COULBOIS, Jean-Louis GELET, David ROCHETTE. Modelling of Electrical Conductivity of a Silver Plasma at Low Temperature[J]. Plasma Science and Technology, 2016, 18(8): 812-820. DOI: 10.1088/1009-0630/18/8/04 |
[7] | DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17 |
[8] | LI Cong (李聪), ZHANG Jialiang (张家良), YAO Zhi (姚志), WU Xingwei (吴兴伟), et al.. Diagnosis of Electron, Vibrational and Rotational Temperatures in an Ar/N 2 Shock Plasma Jet Produced by a Low Pressure DC Cascade Arc Discharge[J]. Plasma Science and Technology, 2013, 15(9): 875-880. DOI: 10.1088/1009-0630/15/9/08 |
[9] | N. LARBI DAHO BACHIR, A. BELASRI. A Simplified Numerical Study of the Kr/Cl2 Plasma Chemistry in Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(4): 343-349. DOI: 10.1088/1009-0630/15/4/07 |
[10] | ZHANG Hong(张虹), JI Tianyi(纪天一), ZHANG Renxi(张仁熙), HOU Huiqi(侯惠奇). Destruction of H2S gas with a Combined Plasma Photolysis (CPP) reactor[J]. Plasma Science and Technology, 2012, 14(2): 134-139. DOI: 10.1088/1009-0630/14/2/10 |