Citation: | Ping WANG, Guanghai HU, Ning YAN, Guosheng XU, Lingyi MENG, Zhikang LU, Lin YU, Manni JIA, Yifeng WANG, Liang CHEN, Heng LAN, Xiang LIU, Mingfu WU, Liang WANG. Experimental investigation of scrape-off layer blob high density transition in L-mode plasmas on EAST[J]. Plasma Science and Technology, 2022, 24(7): 075103. DOI: 10.1088/2058-6272/ac5f82 |
Lithium Beam Emission Spectroscopy systems in the outer midplane and divertor Langmuir probe arrays embedded in the divertor target plates, are utilized to investigate the scrape-off layer (SOL) blob transition and its relation with divertor detachment on EAST. The blob transition in the near SOL is observed during the density ramp-up phase. When the plasma density, normalized to the Greenwald density limit, exceeds a threshold of fGW~0.5, the blob size and lifetime increases by 2 – 3 times, while the blob detection rate decreases by about 2 times. In addition, a weak density shoulder is observed in the near SOL region at the same density threshold. Further analysis indicates that the divertor detachment is highly correlated with the blob transition, and the density threshold of blob transition is consistent with that of the access to the outer divertor detachment. The potential physical mechanisms are discussed. These results could be useful for the understanding of plasma-wall interaction issues in future devices that will operate under a detached divertor and high density conditions (over the blob transition threshold).
The authors would like to acknowledge the support and contributions of the EAST team. The work is supported by the National Key R&D Program of China (Nos. 2017YFE0301300, 2017YFA0402500, 2019YFE03030000), Institute of Energy, Hefei Comprehensive National Science Center (Nos. GXXT2020004, 12105187), National Natural Science Foundation of China (Nos. 11922513, U19A20113, 11905255, 12005004), Anhui Provincial Natural Science Foundation (No. 2008085QA38), and China Postdoctoral Science Foundation (No. 2021M702245).
[1] |
Antar G Y et al 2001 Phys. Rev. Lett. 87 065001 doi: 10.1103/PhysRevLett.87.065001
|
[2] |
Goodall D H J 1982 J. Nucl. Mater. 111–112 11 doi: 10.1016/0022-3115(82)90174-X
|
[3] |
Zweben S J 1985 Phys. Fluids 28 974 doi: 10.1063/1.865069
|
[4] |
Endler M et al 1995 Nucl. Fusion 35 1307 doi: 10.1088/0029-5515/35/11/I01
|
[5] |
Endler M 1999 J. Nucl. Mater. 266–269 84 doi: 10.1016/S0022-3115(98)00659-X
|
[6] |
Umansky M V et al 1998 Phys. Plasmas 5 3373 doi: 10.1063/1.873051
|
[7] |
LaBombard B et al 2001 Phys. Plasmas 8 2107 doi: 10.1063/1.1352596
|
[8] |
Neuhauser J et al 2002 Plasma Phys. Control. Fusion 44 855 doi: 10.1088/0741-3335/44/6/316
|
[9] |
Boedo J A et al 2001 Phys. Plasmas 8 4826 doi: 10.1063/1.1406940
|
[10] |
Xu G S et al 2010 Phys. Plasmas 17 022501 doi: 10.1063/1.3302535
|
[11] |
Asakura N et al 2009 J. Nucl. Mater. 390–391 364 doi: 10.1016/j.jnucmat.2009.01.073
|
[12] |
Garcia O E et al 2006 Plasma Phys. Control. Fusion 48 L1 doi: 10.1088/0741-3335/48/1/L01
|
[13] |
McCormick K et al 1992 J. Nucl. Mater. 196–198 264 doi: 10.1016/S0022-3115(06)80043-7
|
[14] |
D'Ippolito D A, Myra J R and Krasheninnikov S I 2002 Phys. Plasmas 9 222 doi: 10.1063/1.1426394
|
[15] |
Garcia O E et al 2007 J. Nucl. Mater. 363–365 575 doi: 10.1016/j.jnucmat.2006.12.063
|
[16] |
Rudakov D L et al 2005 Nucl. Fusion 45 1589 doi: 10.1088/0029-5515/45/12/014
|
[17] |
Greenwald M 2002 Plasma Phys. Control. Fusion 44 R27 doi: 10.1088/0741-3335/44/8/201
|
[18] |
Carralero D et al 2015 Phys. Rev. Lett. 115 215002 doi: 10.1103/PhysRevLett.115.215002
|
[19] |
Carralero D et al 2014 Nucl. Fusion 54 123005 doi: 10.1088/0029-5515/54/12/123005
|
[20] |
Carralero D et al 2017 Nucl. Fusion 57 056044 doi: 10.1088/1741-4326/aa64b3
|
[21] |
Vianello N et al 2017 Nucl. Fusion 57 116014 doi: 10.1088/1741-4326/aa7db3
|
[22] |
Loarte A et al 1998 Nucl. Fusion 38 331 doi: 10.1088/0029-5515/38/3/303
|
[23] |
Schwörer D et al 2020 Nucl. Fusion 60 126047 doi: 10.1088/1741-4326/ab8776
|
[24] |
Carralero D et al 2015 J. Nucl. Mater. 463 123 doi: 10.1016/j.jnucmat.2014.10.019
|
[25] |
Nielsen A H et al 2017 Plasma Phys. Control. Fusion 59 025012 doi: 10.1088/1361-6587/59/2/025012
|
[26] |
Wynn A et al 2018 Nucl. Fusion 58 056001 doi: 10.1088/1741-4326/aaad78
|
[27] |
Kirk A et al 2016 Plasma Phys. Control. Fusion 58 085008 doi: 10.1088/0741-3335/58/8/085008
|
[28] |
Kuang A Q et al 2019 Nucl. Mater. Energy 19 295 doi: 10.1016/j.nme.2019.02.038
|
[29] |
Yan N et al 2013 Plasma Phys. Control. Fusion 55 115007 doi: 10.1088/0741-3335/55/11/115007
|
[30] |
Wang Q et al 2019 Phys. Plasmas 26 072305 doi: 10.1063/1.5093790
|
[31] |
Xu J C et al 2016 Rev. Sci. Instrum. 87 083504 doi: 10.1063/1.4960181
|
[32] |
Zoletnik S et al 2018 Rev. Sci. Instrum. 89 063503 doi: 10.1063/1.5017224
|
[33] |
Wang Y F et al 2019 Fusion Eng. Des. 144 133 doi: 10.1016/j.fusengdes.2019.05.002
|
[34] |
Aumayr F and Winter H 1985 Ann. Phys. 497 228 doi: 10.1002/andp.19854970304
|
[35] |
Ming T F et al 2009 Fusion Eng. Des. 84 57 doi: 10.1016/j.fusengdes.2008.10.005
|
[36] |
Wang L et al 2019 Nucl. Fusion 59 086036 doi: 10.1088/1741-4326/ab1ed4
|
[37] |
Xu J C et al 2019 J. Instrum. 14 P06028 doi: 10.1088/1748-0221/14/06/P06028
|
[38] |
Stangeby P C 1993 Nucl. Fusion 33 1695 doi: 10.1088/0029-5515/33/11/I10
|
[39] |
Pitcher C S and Stangeby P C 1997 Plasma Phys. Control. Fusion 39 779 doi: 10.1088/0741-3335/39/6/001
|
[40] |
Birkenmeier G et al 2014 Plasma Phys. Control. Fusion 56 075019 doi: 10.1088/0741-3335/56/7/075019
|
[41] |
Huber A et al 2005 Plasma Phys. Control. Fusion 47 409 doi: 10.1088/0741-3335/47/3/002
|
[42] |
Ghim Y C et al 2012 Plasma Phys. Control. Fusion 54 095012 doi: 10.1088/0741-3335/54/9/095012
|
[43] |
Johnsen H, Pécseli H L and Trulsen J 1987 Phys. Fluids 30 2239 doi: 10.1063/1.866158
|
[44] |
Grulke O et al 2014 Nucl. Fusion 54 043012 doi: 10.1088/0029-5515/54/4/043012
|
[45] |
Zhang S B et al 2014 Plasma Sci. Technol. 16 311 doi: 10.1088/1009-0630/16/4/02
|
[46] |
Wang Y M et al 2013 Fusion Eng. Des. 88 2950 doi: 10.1016/j.fusengdes.2013.06.004
|
[47] |
Theiler C et al 2009 Phys. Rev. Lett. 103 065001 doi: 10.1103/PhysRevLett.103.065001
|
[48] |
Krasheninnikov S I, D'ippolito D A and Myra J R 2008 J. Plasma Phys. 74 679 doi: 10.1017/S0022377807006940
|
[49] |
Myra J R, Russell D A and D'Ippolito D A 2006 Phys. Plasmas 13 112502 doi: 10.1063/1.2364858
|
[50] |
Shesterikov I et al 2012 Nucl. Fusion 52 042004 doi: 10.1088/0029-5515/52/4/042004
|
[1] | Pan LU, Dong-Wook KIM, Dong-Wha PARK. Simple reactor for the synthesis of silver nanoparticles with the assistance of ethanol by gas–liquid discharge plasma[J]. Plasma Science and Technology, 2019, 21(4): 44005-044005. DOI: 10.1088/2058-6272/aaeada |
[2] | Shuheng HU (胡淑恒), Xinghao LIU (刘行浩), Zimu XU (许子牧), Jiaquan WANG (汪家权), Yunxia LI (李云霞), Jie SHEN (沈洁), Yan LAN (兰彦), Cheng CHENG (程诚). Degradation and mineralization of ciprofloxacin by gas–liquid discharge non-thermal plasma[J]. Plasma Science and Technology, 2019, 21(1): 15501-015501. DOI: 10.1088/2058-6272/aade82 |
[3] | Linbo GU (顾林波), Yixi CAI (蔡忆昔), Yunxi SHI (施蕴曦), Jing WANG (王静), Xiaoyu PU (濮晓宇), Jing TIAN (田晶), Runlin FAN (樊润林). Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles[J]. Plasma Science and Technology, 2017, 19(11): 115503. DOI: 10.1088/2058-6272/aa7f6e |
[4] | ZHANG Liping (张丽萍). The Instability of Terahertz Plasma Waves in Two Dimensional Gated and Ungated Quantum Electron Gas[J]. Plasma Science and Technology, 2016, 18(4): 360-363. DOI: 10.1088/1009-0630/18/4/05 |
[5] | XIN Qing (辛青), ZHANG Yi (张轶), WU Kaibin (巫开斌). Degradation of Microcystin-LR by Gas-Liquid Interfacial Discharge Plasma[J]. Plasma Science and Technology, 2013, 15(12): 1221-1225. DOI: 10.1088/1009-0630/15/12/11 |
[6] | ZHU Daoyun (朱道云), ZHENG Changxi (郑昌喜), CHEN Dihu (陈弟虎), HE Zhenhui (何振辉). Plasma-Neutral Gas Structure in a Magnesium Cathodic Arc Operating at Oxygen Gas with Experimental Comparison[J]. Plasma Science and Technology, 2013, 15(11): 1116-1121. DOI: 10.1088/1009-0630/15/11/08 |
[7] | M. M. MORSHED, S. M. DANIELS. Electron Density and Optical Emission Measurements of SF6/O2 Plasmas for Silicon Etch Processes[J]. Plasma Science and Technology, 2012, 14(4): 316-320. DOI: 10.1088/1009-0630/14/4/09 |
[8] | LI Fuliang (李付亮), WANG Feng(汪沨), WANG Guoli(王国利), W. PFEIFFER, He Rongtao(何荣涛). Study of Formation and Propagation of Streamers in SF6 and Its Gas Mixtures with Low Content of SF6 Using a One-Dimensional Fluid Model[J]. Plasma Science and Technology, 2012, 14(3): 187-191. DOI: 10.1088/1009-0630/14/3/02 |
[9] | D. S. RAWAL, B. K. SEHGAL, R. MURALIDHARAN, H. K. MALIK. Experimental Study of the Influence of Process Pressure and Gas Composition on GaAs Etching Characteristics in Cl2/BCl3-Based Inductively Coupled Plasma[J]. Plasma Science and Technology, 2011, 13(2): 223-229. |
[10] | A. RAHMATI, H. BIDADI, K. AHMADI, F. HADIAN. Reactive DC Magnetron Sputter Deposited Titanium-Copper-Nitrogen Nano-Composite Thin Films with an Argon/Nitrogen Gas Mixture[J]. Plasma Science and Technology, 2010, 12(6): 681-687. |