Citation: | Ping WANG, Guanghai HU, Ning YAN, Guosheng XU, Lingyi MENG, Zhikang LU, Lin YU, Manni JIA, Yifeng WANG, Liang CHEN, Heng LAN, Xiang LIU, Mingfu WU, Liang WANG. Experimental investigation of scrape-off layer blob high density transition in L-mode plasmas on EAST[J]. Plasma Science and Technology, 2022, 24(7): 075103. DOI: 10.1088/2058-6272/ac5f82 |
Lithium Beam Emission Spectroscopy systems in the outer midplane and divertor Langmuir probe arrays embedded in the divertor target plates, are utilized to investigate the scrape-off layer (SOL) blob transition and its relation with divertor detachment on EAST. The blob transition in the near SOL is observed during the density ramp-up phase. When the plasma density, normalized to the Greenwald density limit, exceeds a threshold of fGW~0.5, the blob size and lifetime increases by 2 – 3 times, while the blob detection rate decreases by about 2 times. In addition, a weak density shoulder is observed in the near SOL region at the same density threshold. Further analysis indicates that the divertor detachment is highly correlated with the blob transition, and the density threshold of blob transition is consistent with that of the access to the outer divertor detachment. The potential physical mechanisms are discussed. These results could be useful for the understanding of plasma-wall interaction issues in future devices that will operate under a detached divertor and high density conditions (over the blob transition threshold).
The authors would like to acknowledge the support and contributions of the EAST team. The work is supported by the National Key R&D Program of China (Nos. 2017YFE0301300, 2017YFA0402500, 2019YFE03030000), Institute of Energy, Hefei Comprehensive National Science Center (Nos. GXXT2020004, 12105187), National Natural Science Foundation of China (Nos. 11922513, U19A20113, 11905255, 12005004), Anhui Provincial Natural Science Foundation (No. 2008085QA38), and China Postdoctoral Science Foundation (No. 2021M702245).
[1] |
Antar G Y et al 2001 Phys. Rev. Lett. 87 065001 doi: 10.1103/PhysRevLett.87.065001
|
[2] |
Goodall D H J 1982 J. Nucl. Mater. 111–112 11 doi: 10.1016/0022-3115(82)90174-X
|
[3] |
Zweben S J 1985 Phys. Fluids 28 974 doi: 10.1063/1.865069
|
[4] |
Endler M et al 1995 Nucl. Fusion 35 1307 doi: 10.1088/0029-5515/35/11/I01
|
[5] |
Endler M 1999 J. Nucl. Mater. 266–269 84 doi: 10.1016/S0022-3115(98)00659-X
|
[6] |
Umansky M V et al 1998 Phys. Plasmas 5 3373 doi: 10.1063/1.873051
|
[7] |
LaBombard B et al 2001 Phys. Plasmas 8 2107 doi: 10.1063/1.1352596
|
[8] |
Neuhauser J et al 2002 Plasma Phys. Control. Fusion 44 855 doi: 10.1088/0741-3335/44/6/316
|
[9] |
Boedo J A et al 2001 Phys. Plasmas 8 4826 doi: 10.1063/1.1406940
|
[10] |
Xu G S et al 2010 Phys. Plasmas 17 022501 doi: 10.1063/1.3302535
|
[11] |
Asakura N et al 2009 J. Nucl. Mater. 390–391 364 doi: 10.1016/j.jnucmat.2009.01.073
|
[12] |
Garcia O E et al 2006 Plasma Phys. Control. Fusion 48 L1 doi: 10.1088/0741-3335/48/1/L01
|
[13] |
McCormick K et al 1992 J. Nucl. Mater. 196–198 264 doi: 10.1016/S0022-3115(06)80043-7
|
[14] |
D'Ippolito D A, Myra J R and Krasheninnikov S I 2002 Phys. Plasmas 9 222 doi: 10.1063/1.1426394
|
[15] |
Garcia O E et al 2007 J. Nucl. Mater. 363–365 575 doi: 10.1016/j.jnucmat.2006.12.063
|
[16] |
Rudakov D L et al 2005 Nucl. Fusion 45 1589 doi: 10.1088/0029-5515/45/12/014
|
[17] |
Greenwald M 2002 Plasma Phys. Control. Fusion 44 R27 doi: 10.1088/0741-3335/44/8/201
|
[18] |
Carralero D et al 2015 Phys. Rev. Lett. 115 215002 doi: 10.1103/PhysRevLett.115.215002
|
[19] |
Carralero D et al 2014 Nucl. Fusion 54 123005 doi: 10.1088/0029-5515/54/12/123005
|
[20] |
Carralero D et al 2017 Nucl. Fusion 57 056044 doi: 10.1088/1741-4326/aa64b3
|
[21] |
Vianello N et al 2017 Nucl. Fusion 57 116014 doi: 10.1088/1741-4326/aa7db3
|
[22] |
Loarte A et al 1998 Nucl. Fusion 38 331 doi: 10.1088/0029-5515/38/3/303
|
[23] |
Schwörer D et al 2020 Nucl. Fusion 60 126047 doi: 10.1088/1741-4326/ab8776
|
[24] |
Carralero D et al 2015 J. Nucl. Mater. 463 123 doi: 10.1016/j.jnucmat.2014.10.019
|
[25] |
Nielsen A H et al 2017 Plasma Phys. Control. Fusion 59 025012 doi: 10.1088/1361-6587/59/2/025012
|
[26] |
Wynn A et al 2018 Nucl. Fusion 58 056001 doi: 10.1088/1741-4326/aaad78
|
[27] |
Kirk A et al 2016 Plasma Phys. Control. Fusion 58 085008 doi: 10.1088/0741-3335/58/8/085008
|
[28] |
Kuang A Q et al 2019 Nucl. Mater. Energy 19 295 doi: 10.1016/j.nme.2019.02.038
|
[29] |
Yan N et al 2013 Plasma Phys. Control. Fusion 55 115007 doi: 10.1088/0741-3335/55/11/115007
|
[30] |
Wang Q et al 2019 Phys. Plasmas 26 072305 doi: 10.1063/1.5093790
|
[31] |
Xu J C et al 2016 Rev. Sci. Instrum. 87 083504 doi: 10.1063/1.4960181
|
[32] |
Zoletnik S et al 2018 Rev. Sci. Instrum. 89 063503 doi: 10.1063/1.5017224
|
[33] |
Wang Y F et al 2019 Fusion Eng. Des. 144 133 doi: 10.1016/j.fusengdes.2019.05.002
|
[34] |
Aumayr F and Winter H 1985 Ann. Phys. 497 228 doi: 10.1002/andp.19854970304
|
[35] |
Ming T F et al 2009 Fusion Eng. Des. 84 57 doi: 10.1016/j.fusengdes.2008.10.005
|
[36] |
Wang L et al 2019 Nucl. Fusion 59 086036 doi: 10.1088/1741-4326/ab1ed4
|
[37] |
Xu J C et al 2019 J. Instrum. 14 P06028 doi: 10.1088/1748-0221/14/06/P06028
|
[38] |
Stangeby P C 1993 Nucl. Fusion 33 1695 doi: 10.1088/0029-5515/33/11/I10
|
[39] |
Pitcher C S and Stangeby P C 1997 Plasma Phys. Control. Fusion 39 779 doi: 10.1088/0741-3335/39/6/001
|
[40] |
Birkenmeier G et al 2014 Plasma Phys. Control. Fusion 56 075019 doi: 10.1088/0741-3335/56/7/075019
|
[41] |
Huber A et al 2005 Plasma Phys. Control. Fusion 47 409 doi: 10.1088/0741-3335/47/3/002
|
[42] |
Ghim Y C et al 2012 Plasma Phys. Control. Fusion 54 095012 doi: 10.1088/0741-3335/54/9/095012
|
[43] |
Johnsen H, Pécseli H L and Trulsen J 1987 Phys. Fluids 30 2239 doi: 10.1063/1.866158
|
[44] |
Grulke O et al 2014 Nucl. Fusion 54 043012 doi: 10.1088/0029-5515/54/4/043012
|
[45] |
Zhang S B et al 2014 Plasma Sci. Technol. 16 311 doi: 10.1088/1009-0630/16/4/02
|
[46] |
Wang Y M et al 2013 Fusion Eng. Des. 88 2950 doi: 10.1016/j.fusengdes.2013.06.004
|
[47] |
Theiler C et al 2009 Phys. Rev. Lett. 103 065001 doi: 10.1103/PhysRevLett.103.065001
|
[48] |
Krasheninnikov S I, D'ippolito D A and Myra J R 2008 J. Plasma Phys. 74 679 doi: 10.1017/S0022377807006940
|
[49] |
Myra J R, Russell D A and D'Ippolito D A 2006 Phys. Plasmas 13 112502 doi: 10.1063/1.2364858
|
[50] |
Shesterikov I et al 2012 Nucl. Fusion 52 042004 doi: 10.1088/0029-5515/52/4/042004
|
[1] | N C ROY, M M HASAN, A H KABIR, M A REZA, M R TALUKDER, A N CHOWDHURY. Atmospheric pressure gliding arc discharge plasma treatments for improving germination, growth and yield of wheat[J]. Plasma Science and Technology, 2018, 20(11): 115501. DOI: 10.1088/2058-6272/aac647 |
[2] | Jiafeng JIANG (蒋佳峰), Jiangang LI (李建刚), Yuanhua DONG (董元华). Effect of cold plasma treatment on seedling growth and nutrient absorption of tomato[J]. Plasma Science and Technology, 2018, 20(4): 44007-044007. DOI: 10.1088/2058-6272/aaa0bf |
[3] | DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17 |
[4] | ZHAN Zhibin (詹志彬), DI Lanbo (底兰波), ZHANG Xiuling (张秀玲), LI Yanchun (李燕春). Synthesis of Cu-Doped Mixed-Phase TiO2 with the Assistance of Ionic Liquid by Atmospheric-Pressure Cold Plasma[J]. Plasma Science and Technology, 2016, 18(5): 494-499. DOI: 10.1088/1009-0630/18/5/09 |
[5] | TONG Jiayun(童家赟), HE Rui(何瑞), ZHANG Xiaoli(张晓丽), ZHAN Ruoting(詹若挺), CHEN Weiwen(陈蔚文), YANG Size(杨思泽). Effects of Atmospheric Pressure Air Plasma Pretreatment on the Seed Germination and Early Growth of Andrographis paniculata[J]. Plasma Science and Technology, 2014, 16(3): 260-266. DOI: 10.1088/1009-0630/16/3/16 |
[6] | JIANG Jiafeng(蒋佳峰), HE Xin(何昕), LI Ling(李玲), LI Jiangang(李建刚), SHAO Hanliang(邵汉良), XU Qilai(徐启来), YE Renhong(叶仁宏), DONG Yuanhua(董元华). Effect of Cold Plasma Treatment on Seed Germination and Growth of Wheat[J]. Plasma Science and Technology, 2014, 16(1): 54-58. DOI: 10.1088/1009-0630/16/1/12 |
[7] | FEI Xiaomeng (费小猛), Shin-ichi KURODA, Tamio MORI, Katsuhiko HOSOI. High-Density Polyethylene (HDPE) Surface Treatment Using an RF Capacitive Atmospheric Pressure Cold Ar Plasma Jet[J]. Plasma Science and Technology, 2013, 15(6): 577-581. DOI: 10.1088/1009-0630/15/6/16 |
[8] | F. JAN, A. W. KHAN, A. SAEED, M. ZAKAULLAH. Comparative Study of Plasma Parameters in Magnetic Pole Enhanced Inductively Coupled Argon Plasmas[J]. Plasma Science and Technology, 2013, 15(4): 329-334. DOI: 10.1088/1009-0630/15/4/05 |
[9] | DI Lanbo, LI Xiaosong, ZHAO Tianliang, CHANG Dalei, LIU Qianqian, ZHU Aimin. Tuning Effect of N2 on Atmospheric-Pressure Cold Plasma CVD of TiO2 Photocatalytic Films[J]. Plasma Science and Technology, 2013, 15(1): 64-69. DOI: 10.1088/1009-0630/15/1/11 |
[10] | QIAN Muyang(钱沐杨), REN Chunsheng(任春生), WANG Dezhen(王德真), FENG Yan(冯岩), ZHANG Jialiang(张家良). Atmospheric Pressure Cold Argon/Oxygen Plasma Jet Assisted by Preionization of Syringe Needle Electrode[J]. Plasma Science and Technology, 2010, 12(5): 561-565. |
1. | Li, L., Zhang, L., Dong, Y. Seed priming with cold plasma mitigated the negative influence of drought stress on growth and yield of rapeseed (Brassica napus L.). Industrial Crops and Products, 2025. DOI:10.1016/j.indcrop.2025.120899 |
2. | Kamseu-Mogo, J.-P., Soulier, M., Kamgang-Youbi, G. et al. Advancements in maize cultivation: synergistic effects of dry atmospheric plasma combined with plasma-activated water. Journal of Physics D: Applied Physics, 2025, 58(5): 055201. DOI:10.1088/1361-6463/ad8acf |
3. | Bai, R., Lan, C., Liu, D. et al. Revolutionizing Sustainable Agriculture: The Role of Atmospheric Pressure Plasma in Enhancing Plant Growth and Resilience. IEEE Transactions on Plasma Science, 2025. DOI:10.1109/TPS.2025.3543353 |
4. | Porcher, A., Duffour, E., Perisse, F. et al. Rapid changes in stress-related gene expression after short exposure of Arabidopsis leaves to cold plasma. Journal of Plant Physiology, 2025. DOI:10.1016/j.jplph.2024.154397 |
5. | Beak, H.K., Priatama, R.A., Han, S.-I. et al. Biomass enhancement and activation of transcriptional regulation in sorghum seedling by plasma-activated water. Frontiers in Plant Science, 2024. DOI:10.3389/fpls.2024.1488583 |
6. | Marček, T., Hamow, K.Á., Janda, T. et al. Effects of High Voltage Electrical Discharge (HVED) on Endogenous Hormone and Polyphenol Profile in Wheat. Plants, 2023, 12(6): 1235. DOI:10.3390/plants12061235 |
7. | Tan, Y., Duan, Y., Chi, Q. et al. The Role of Reactive Oxygen Species in Plant Response to Radiation. International Journal of Molecular Sciences, 2023, 24(4): 3346. DOI:10.3390/ijms24043346 |
8. | Waskow, A., Guihur, A., Howling, A. et al. Catabolism of Glucosinolates into Nitriles Revealed by RNA Sequencing of Arabidopsis thaliana Seedlings after Non-Thermal Plasma-Seed Treatment. Life, 2022, 12(11): 1822. DOI:10.3390/life12111822 |
9. | Cui, D., Yin, Y., Sun, H. et al. Regulation of cellular redox homeostasis in Arabidopsis thaliana seedling by atmospheric pressure cold plasma-generated reactive oxygen/nitrogen species. Ecotoxicology and Environmental Safety, 2022. DOI:10.1016/j.ecoenv.2022.113703 |
10. | Priatama, R.A., Pervitasari, A.N., Park, S. et al. Current Advancements in the Molecular Mechanism of Plasma Treatment for Seed Germination and Plant Growth. International Journal of Molecular Sciences, 2022, 23(9): 4609. DOI:10.3390/ijms23094609 |
11. | Mildaziene, V., Ivankov, A., Sera, B. et al. Biochemical and Physiological Plant Processes Affected by Seed Treatment with Non-Thermal Plasma. Plants, 2022, 11(7): 856. DOI:10.3390/plants11070856 |
12. | Waskow, A., Guihur, A., Howling, A. et al. RNA Sequencing of Arabidopsis thaliana Seedlings after Non-Thermal Plasma-Seed Treatment Reveals Upregulation in Plant Stress and Defense Pathways. International Journal of Molecular Sciences, 2022, 23(6): 3070. DOI:10.3390/ijms23063070 |