Citation: | Ping WANG, Guanghai HU, Ning YAN, Guosheng XU, Lingyi MENG, Zhikang LU, Lin YU, Manni JIA, Yifeng WANG, Liang CHEN, Heng LAN, Xiang LIU, Mingfu WU, Liang WANG. Experimental investigation of scrape-off layer blob high density transition in L-mode plasmas on EAST[J]. Plasma Science and Technology, 2022, 24(7): 075103. DOI: 10.1088/2058-6272/ac5f82 |
Lithium Beam Emission Spectroscopy systems in the outer midplane and divertor Langmuir probe arrays embedded in the divertor target plates, are utilized to investigate the scrape-off layer (SOL) blob transition and its relation with divertor detachment on EAST. The blob transition in the near SOL is observed during the density ramp-up phase. When the plasma density, normalized to the Greenwald density limit, exceeds a threshold of fGW~0.5, the blob size and lifetime increases by 2 – 3 times, while the blob detection rate decreases by about 2 times. In addition, a weak density shoulder is observed in the near SOL region at the same density threshold. Further analysis indicates that the divertor detachment is highly correlated with the blob transition, and the density threshold of blob transition is consistent with that of the access to the outer divertor detachment. The potential physical mechanisms are discussed. These results could be useful for the understanding of plasma-wall interaction issues in future devices that will operate under a detached divertor and high density conditions (over the blob transition threshold).
The authors would like to acknowledge the support and contributions of the EAST team. The work is supported by the National Key R&D Program of China (Nos. 2017YFE0301300, 2017YFA0402500, 2019YFE03030000), Institute of Energy, Hefei Comprehensive National Science Center (Nos. GXXT2020004, 12105187), National Natural Science Foundation of China (Nos. 11922513, U19A20113, 11905255, 12005004), Anhui Provincial Natural Science Foundation (No. 2008085QA38), and China Postdoctoral Science Foundation (No. 2021M702245).
[1] |
Antar G Y et al 2001 Phys. Rev. Lett. 87 065001 doi: 10.1103/PhysRevLett.87.065001
|
[2] |
Goodall D H J 1982 J. Nucl. Mater. 111–112 11 doi: 10.1016/0022-3115(82)90174-X
|
[3] |
Zweben S J 1985 Phys. Fluids 28 974 doi: 10.1063/1.865069
|
[4] |
Endler M et al 1995 Nucl. Fusion 35 1307 doi: 10.1088/0029-5515/35/11/I01
|
[5] |
Endler M 1999 J. Nucl. Mater. 266–269 84 doi: 10.1016/S0022-3115(98)00659-X
|
[6] |
Umansky M V et al 1998 Phys. Plasmas 5 3373 doi: 10.1063/1.873051
|
[7] |
LaBombard B et al 2001 Phys. Plasmas 8 2107 doi: 10.1063/1.1352596
|
[8] |
Neuhauser J et al 2002 Plasma Phys. Control. Fusion 44 855 doi: 10.1088/0741-3335/44/6/316
|
[9] |
Boedo J A et al 2001 Phys. Plasmas 8 4826 doi: 10.1063/1.1406940
|
[10] |
Xu G S et al 2010 Phys. Plasmas 17 022501 doi: 10.1063/1.3302535
|
[11] |
Asakura N et al 2009 J. Nucl. Mater. 390–391 364 doi: 10.1016/j.jnucmat.2009.01.073
|
[12] |
Garcia O E et al 2006 Plasma Phys. Control. Fusion 48 L1 doi: 10.1088/0741-3335/48/1/L01
|
[13] |
McCormick K et al 1992 J. Nucl. Mater. 196–198 264 doi: 10.1016/S0022-3115(06)80043-7
|
[14] |
D'Ippolito D A, Myra J R and Krasheninnikov S I 2002 Phys. Plasmas 9 222 doi: 10.1063/1.1426394
|
[15] |
Garcia O E et al 2007 J. Nucl. Mater. 363–365 575 doi: 10.1016/j.jnucmat.2006.12.063
|
[16] |
Rudakov D L et al 2005 Nucl. Fusion 45 1589 doi: 10.1088/0029-5515/45/12/014
|
[17] |
Greenwald M 2002 Plasma Phys. Control. Fusion 44 R27 doi: 10.1088/0741-3335/44/8/201
|
[18] |
Carralero D et al 2015 Phys. Rev. Lett. 115 215002 doi: 10.1103/PhysRevLett.115.215002
|
[19] |
Carralero D et al 2014 Nucl. Fusion 54 123005 doi: 10.1088/0029-5515/54/12/123005
|
[20] |
Carralero D et al 2017 Nucl. Fusion 57 056044 doi: 10.1088/1741-4326/aa64b3
|
[21] |
Vianello N et al 2017 Nucl. Fusion 57 116014 doi: 10.1088/1741-4326/aa7db3
|
[22] |
Loarte A et al 1998 Nucl. Fusion 38 331 doi: 10.1088/0029-5515/38/3/303
|
[23] |
Schwörer D et al 2020 Nucl. Fusion 60 126047 doi: 10.1088/1741-4326/ab8776
|
[24] |
Carralero D et al 2015 J. Nucl. Mater. 463 123 doi: 10.1016/j.jnucmat.2014.10.019
|
[25] |
Nielsen A H et al 2017 Plasma Phys. Control. Fusion 59 025012 doi: 10.1088/1361-6587/59/2/025012
|
[26] |
Wynn A et al 2018 Nucl. Fusion 58 056001 doi: 10.1088/1741-4326/aaad78
|
[27] |
Kirk A et al 2016 Plasma Phys. Control. Fusion 58 085008 doi: 10.1088/0741-3335/58/8/085008
|
[28] |
Kuang A Q et al 2019 Nucl. Mater. Energy 19 295 doi: 10.1016/j.nme.2019.02.038
|
[29] |
Yan N et al 2013 Plasma Phys. Control. Fusion 55 115007 doi: 10.1088/0741-3335/55/11/115007
|
[30] |
Wang Q et al 2019 Phys. Plasmas 26 072305 doi: 10.1063/1.5093790
|
[31] |
Xu J C et al 2016 Rev. Sci. Instrum. 87 083504 doi: 10.1063/1.4960181
|
[32] |
Zoletnik S et al 2018 Rev. Sci. Instrum. 89 063503 doi: 10.1063/1.5017224
|
[33] |
Wang Y F et al 2019 Fusion Eng. Des. 144 133 doi: 10.1016/j.fusengdes.2019.05.002
|
[34] |
Aumayr F and Winter H 1985 Ann. Phys. 497 228 doi: 10.1002/andp.19854970304
|
[35] |
Ming T F et al 2009 Fusion Eng. Des. 84 57 doi: 10.1016/j.fusengdes.2008.10.005
|
[36] |
Wang L et al 2019 Nucl. Fusion 59 086036 doi: 10.1088/1741-4326/ab1ed4
|
[37] |
Xu J C et al 2019 J. Instrum. 14 P06028 doi: 10.1088/1748-0221/14/06/P06028
|
[38] |
Stangeby P C 1993 Nucl. Fusion 33 1695 doi: 10.1088/0029-5515/33/11/I10
|
[39] |
Pitcher C S and Stangeby P C 1997 Plasma Phys. Control. Fusion 39 779 doi: 10.1088/0741-3335/39/6/001
|
[40] |
Birkenmeier G et al 2014 Plasma Phys. Control. Fusion 56 075019 doi: 10.1088/0741-3335/56/7/075019
|
[41] |
Huber A et al 2005 Plasma Phys. Control. Fusion 47 409 doi: 10.1088/0741-3335/47/3/002
|
[42] |
Ghim Y C et al 2012 Plasma Phys. Control. Fusion 54 095012 doi: 10.1088/0741-3335/54/9/095012
|
[43] |
Johnsen H, Pécseli H L and Trulsen J 1987 Phys. Fluids 30 2239 doi: 10.1063/1.866158
|
[44] |
Grulke O et al 2014 Nucl. Fusion 54 043012 doi: 10.1088/0029-5515/54/4/043012
|
[45] |
Zhang S B et al 2014 Plasma Sci. Technol. 16 311 doi: 10.1088/1009-0630/16/4/02
|
[46] |
Wang Y M et al 2013 Fusion Eng. Des. 88 2950 doi: 10.1016/j.fusengdes.2013.06.004
|
[47] |
Theiler C et al 2009 Phys. Rev. Lett. 103 065001 doi: 10.1103/PhysRevLett.103.065001
|
[48] |
Krasheninnikov S I, D'ippolito D A and Myra J R 2008 J. Plasma Phys. 74 679 doi: 10.1017/S0022377807006940
|
[49] |
Myra J R, Russell D A and D'Ippolito D A 2006 Phys. Plasmas 13 112502 doi: 10.1063/1.2364858
|
[50] |
Shesterikov I et al 2012 Nucl. Fusion 52 042004 doi: 10.1088/0029-5515/52/4/042004
|
[1] | Baowei WANG (王保伟), Chao WANG (王超), Shumei YAO (姚淑美), Yeping PENG (彭叶平), Yan XU (徐艳). Plasma-catalytic degradation of tetracycline hydrochloride over Mn/γ-Al2O3 catalysts in a dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2019, 21(6): 65503-065503. DOI: 10.1088/2058-6272/ab079c |
[2] | Tao ZHU (竹涛), Wenjing BIAN (边文璟), Mingfeng MA (马名烽), Weili YE (叶维丽), Ruonan WANG (王若男), Xing ZHANG (张星). Influence of gas atmosphere on synergistic control of mercury and dioxin by nonthermal plasma[J]. Plasma Science and Technology, 2019, 21(4): 44006-044006. DOI: 10.1088/2058-6272/aaead7 |
[3] | Xu CAO (曹栩), Weixuan ZHAO (赵玮璇), Renxi ZHANG (张仁熙), Huiqi HOU (侯惠奇), Shanping CHEN (陈善平), Ruina ZHANG (张瑞娜). Conversion of NO with a catalytic packed-bed dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2017, 19(11): 115504. DOI: 10.1088/2058-6272/aa7ced |
[4] | WU Haixia (武海霞), FANG Zhi (方志), ZHOU Tong (周侗), LU Chen (陆晨), XU Yanhua (徐炎华). Discoloration of Congo Red by Rod-Plate Dielectric Barrier Discharge Processes at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(5): 500-505. DOI: 10.1088/1009-0630/18/5/10 |
[5] | ZHANG Renxi (张仁熙), WANG Jingting (王婧婷), CAO Xu (曹栩), HOU Huiqi (侯惠奇). Decomposition of Potent Greenhouse Gases SF6, CF4 and SF5CF3 by Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2016, 18(4): 388-393. DOI: 10.1088/1009-0630/18/4/10 |
[6] | DI Lanbo(底兰波), ZHANG Xiuling(张秀玲), XU Zhijian(徐志坚). Preparation of Copper Nanoparticles Using Dielectric Barrier Discharge at Atmospheric Pressure and its Mechanism[J]. Plasma Science and Technology, 2014, 16(1): 41-44. DOI: 10.1088/1009-0630/16/1/09 |
[7] | WANG Changquan (王长全), ZHANG Guixin (张贵新), WANG Xinxin (王新新). Surface Treatment of Polypropylene Films Using Dielectric Barrier Discharge with Magnetic Field[J]. Plasma Science and Technology, 2012, 14(10): 891-896. DOI: 10.1088/1009-0630/14/10/07 |
[8] | YANG Shen (杨深), SSHI Ting(石挺), LIU yang(刘洋 ), CHEN Yuming (陈育明). Modelling of Ar-Hg Electrodeless Lamps[J]. Plasma Science and Technology, 2012, 14(2): 147-151. DOI: 10.1088/1009-0630/14/2/12 |
[9] | SHAO Xianjun, ZHANG Guanjun, KAWADA Masatake, MA Yue, LI Yaxi. Simulational study on multi-pulse phenomena of atmospheric pressure argon dielectric barrier discharge[J]. Plasma Science and Technology, 2011, 13(6): 708-713. |
[10] | DIAO Ying, XU Jinzhou, HU Qianqian, ZHANG Jing, SHI Jianjun, GUO Ying. Electrical and Optical Characterization of Dielectric Barrier Discharge and Its Application to Plasma Treatment of Poly (ethylene terephtalate) (PET) Fibers[J]. Plasma Science and Technology, 2011, 13(6): 641-644. |