Advanced Search+
Bo LIU, Heng ZHANG, Bin XU, Zhengzheng MA, Hui LI, Wenshan DUAN. Detecting the meteoroid by measuring the electromagnetic waves excited by the collision between the hypervelocity meteoroid and spacecraft[J]. Plasma Science and Technology, 2022, 24(11): 115301. DOI: 10.1088/2058-6272/ac7542
Citation: Bo LIU, Heng ZHANG, Bin XU, Zhengzheng MA, Hui LI, Wenshan DUAN. Detecting the meteoroid by measuring the electromagnetic waves excited by the collision between the hypervelocity meteoroid and spacecraft[J]. Plasma Science and Technology, 2022, 24(11): 115301. DOI: 10.1088/2058-6272/ac7542

Detecting the meteoroid by measuring the electromagnetic waves excited by the collision between the hypervelocity meteoroid and spacecraft

More Information
  • Corresponding author:

    Wenshan DUAN, E-mail: duanws@nwnu.edu.cn

  • Received Date: January 23, 2022
  • Revised Date: May 30, 2022
  • Accepted Date: May 31, 2022
  • Available Online: December 05, 2023
  • Published Date: August 29, 2022
  • The electromagnetic pulse excited by the collision between a hypervelocity meteoroid and a spacecraft is studied both numerically and theoretically. It is found that there are two kinds of electromagnetic pulse. The high-frequency electromagnetic pulse may be excited by the sum of all the electric dipoles. Each electron can be considered as an electric dipole. The low-frequency electromagnetic pulse is produced by the Langmuir oscillation of electrons. The energy flux density and the duration time of the excited low-frequency electromagnetic pulse by the meteoroid are also studied in the present paper. It is shown that the energy flux density increases as either the impact speed or the mass of the meteoroid increases. It is also shown that the duration time decreases as both the impact speed and the mass of the meteoroid increase. By measuring the strength and the duration time of the electromagnetic pulse excited by the collision between the hypervelocity meteoroid and spacecraft, we can estimate the speed and the mass of the hypervelocity meteoroid, which will be helpful in space flight and space exploration.

  • This work was supported by National Natural Science Foundation of China (Nos. 11965019, 42004131 and 42065005).

  • [1]
    Fletcher A, Mathias D L and Close S 2015 Susceptibility of spacecraft to impact-induced electromagnetic pulses Proceedings of 2015 Annual Reliability and Maintainability Symposium (RAMS) (Palm Harbor: IEEE) 1
    [2]
    Fletcher A C 2021 Characterizing electromagnetic pulses from hypervelocity impact plasmas Tech. Rep. NRL/MR/ 6757–20-10 (Washington, DC: Naval Research Lab. )
    [3]
    Brown P et al 2002 Nature 420 294 doi: 10.1038/nature01238
    [4]
    Fletcher A C and Close S 2017 Phys. Plasmas 24 053102 doi: 10.1063/1.4980833
    [5]
    Close S et al 2010 J. Geophys. Res. : Space Phys. 115 A12328 doi: 10.1029/2010JA015921
    [6]
    Xu M Y and Song W D 2019 Phys. Plasmas 26 113103 doi: 10.1063/1.5097203
    [7]
    Close S et al 2002 J. Geophys. Res. : Space Phys. 107 1295 doi: 10.1029/2002JA009253
    [8]
    Whipple F L 1947 Astron. J. 52 131 doi: 10.1086/106009
    [9]
    Lai S T and Tautz M F 2006 IEEE Trans. Plasma Sci. 34 2053 doi: 10.1109/TPS.2006.883362
    [10]
    Friichtenicht J F and Slattery J C 1963 Ionization associated with hypervelocity impact NASA Technical Note D-2091 (Washington, DC: NASA)
    [11]
    Lee N et al 2011 Study of hypervelocity impact plasma expansion Proc. of the III AIAA Atmospheric Space Environments Conf. (Honolulu) (AIAA) 3147
    [12]
    Zhang Q M et al 2018 Phys. Plasmas 25 022906 doi: 10.1063/1.5009067
    [13]
    Starks M J et al 2006 Int. J. Impact Eng. 33 781 doi: 10.1016/j.ijimpeng.2006.09.044
    [14]
    Zel'dovich Y B and Raizer Y P 1967 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (New York: Academic) 2
    [15]
    Close S et al 2007 Icarus 186 547 doi: 10.1016/j.icarus.2006.09.007
    [16]
    Lee N et al 2013 Phys. Plasmas 20 032901 doi: 10.1063/1.4794331
    [17]
    Close S et al 2013 Phys. Plasmas 20 092102 doi: 10.1063/1.4819777
    [18]
    Tarantino P et al 2018 Phys. Plasmas 25 092103 doi: 10.1063/1.5039656
    [19]
    Zhang K et al 2016 Phys. Plasmas 23 083519 doi: 10.1063/1.4960297
    [20]
    Vaverka J et al 2017 IEEE Trans. Plasma Sci. 45 2048 doi: 10.1109/TPS.2017.2676984
    [21]
    Song W D et al 2016 Phys. Plasmas 23 073506 doi: 10.1063/1.4956440
    [22]
    Zhaoxia M A et al 2020 Int. J. Impact Eng. 141 103560 doi: 10.1016/j.ijimpeng.2020.103560
    [23]
    Shohet G et al 2021 Int. J. Impact Eng. 152 103840 doi: 10.1016/j.ijimpeng.2021.103840
    [24]
    Moorhead A V and Matney M 2021 Adv. Space Res. 67 384 doi: 10.1016/j.asr.2020.09.015
    [25]
    Hew Y M et al 2018 Int. J. Impact Eng. 121 1 doi: 10.1016/j.ijimpeng.2018.05.008
    [26]
    Hew Y M and Close S 2021 Int. J. Impact Eng. 150 103792 doi: 10.1016/j.ijimpeng.2020.103792
    [27]
    Liu M L et al 2017 Procedia Eng. 188 286 doi: 10.1016/j.proeng.2017.04.486
    [28]
    McDonnell J A M, McBride N and Gardner D J 1997 The Leonid meteoroid stream: Spacecraft interactions and effects Proc. of the Second European Conf. on Space Debris (ESOC) Darnatadt: ESA SP 393
    [29]
    Caswell R D, McBride N and Taylor A 1995 Int. J. Impact Eng. 17 139 doi: 10.1016/0734-743X(95)99843-G
    [30]
    Frost V C 1970 Meteoroid damage assessment- Space vehicle design criteria NASA-SP-8042 NASA
    [31]
    Tarantino P M 2018 Determining the evolution and effects of hypervelocity plasma plumes PhD Thesis Stanford University, Stanford
    [32]
    Goel A and Close S 2015 Electrical anomalies on spacecraft due to hypervelocity impacts Proc. of 2015 IEEE Aerospace Conf. (Big Sky, MT: IEEE) 17
    [33]
    Estacio B et al 2021 Int. J. Impact Eng. 151 103833 doi: 10.1016/j.ijimpeng.2021.103833
    [34]
    Drolshagen G 2008 Adv. Space Res. 41 1123 doi: 10.1016/j.asr.2007.09.007
    [35]
    Johnson T et al 2011 Detection and analysis of RF data from hypervelocity impacts Proc. of the III AIAA Atmospheric Space Environments Conf. (Honolulu: AIAA) 3149
    [36]
    Ratcliff P R et al 1997 Adv. Space Res. 20 1471 doi: 10.1016/S0273-1177(97)00419-5
    [37]
    Ratcliff P R et al 1997 Int. J. Impact Eng. 20 663 doi: 10.1016/S0734-743X(97)87453-2
    [38]
    Hornung K, Malama Y G and Kestenboim K S 2000 Astrophys. Space Sci. 274 355 doi: 10.1023/A:1026553502542
    [39]
    Ikeya N and Matsumoto Y 2015 Publ. Astron. Soc. Jpn. 67 64 doi: 10.1093/pasj/psv052
    [40]
    Godfrey B B 1974 J. Comput. Phys. 15 504 doi: 10.1016/0021-9991(74)90076-X
    [41]
    Greenwood A D et al 2004 J. Comput. Phys. 201 665 doi: 10.1016/j.jcp.2004.06.021
    [42]
    Spitkovsky A 2008 Astrophys. J. 682 L5 doi: 10.1086/590248
    [43]
    Martins S F et al 2010 Comput. Phys. Commun. 181 869 doi: 10.1016/j.cpc.2009.12.023
    [44]
    Vay J L et al 2011 J. Comput. Phys. 230 5908 doi: 10.1016/j.jcp.2011.04.003
    [45]
    Jiang C L 1975 IEEE Trans. Antennas Propag. 23 83 doi: 10.1109/TAP.1975.1141007
    [46]
    Nuttall A M 2018 Radio-frequency emissions from hypervelocity impacts on charged spacecraft PhD Thesis Stanford University, Stanford
  • Related Articles

    [1]Jing ZHANG, Shurong YE, Tianxu LIU, Anbang SUN. 1d3v PIC/MCC simulation of dielectric barrier discharge dynamics in hydrogen sulfide[J]. Plasma Science and Technology, 2022, 24(2): 025401. DOI: 10.1088/2058-6272/ac3d7a
    [2]Qi LIU (刘祺), Lei YANG (杨磊), Yuping HUANG (黄玉平), Xu ZHAO (赵絮), Zaiping ZHENG (郑再平). PIC simulation of plasma properties in the discharge channel of a pulsed plasma thruster with flared electrodes[J]. Plasma Science and Technology, 2019, 21(7): 74005-074005. DOI: 10.1088/2058-6272/aaff2e
    [3]Hanbing JIN (金晗冰), Cui MENG (孟萃), Yunsheng JIANG (姜云升), Ping WU (吴平), Zhiqian XU (徐志谦). Simulation of electromagnetic pulses generated by escaped electrons in a high- power laser chamber[J]. Plasma Science and Technology, 2018, 20(11): 115201. DOI: 10.1088/2058-6272/aac838
    [4]Yanhui JIA (贾艳辉), Juanjuan CHEN (陈娟娟), Ning GUO (郭宁), Xinfeng SUN (孙新锋), Chenchen WU (吴辰宸), Tianping ZHANG (张天平). 2D hybrid-PIC simulation of the two and three-grid system of ion thruster[J]. Plasma Science and Technology, 2018, 20(10): 105502. DOI: 10.1088/2058-6272/aace52
    [5]Xifeng CAO (曹希峰), Guanrong HANG (杭观荣), Hui LIU (刘辉), Yingchao MENG (孟颖超), Xiaoming LUO (罗晓明), Daren YU (于达仁). Hybrid–PIC simulation of sputtering product distribution in a Hall thruster[J]. Plasma Science and Technology, 2017, 19(10): 105501. DOI: 10.1088/2058-6272/aa7940
    [6]TANG Enling (唐恩凌), WU Jin (吴尽), WANG Meng (王猛), ZHANG Lijiao (张立佼), XIANG Shenghai (相升海), XIA Jin (夏瑾), LIU Shuhua (刘淑华), HE Liping (贺丽萍), HAN Yafei (韩雅菲), XU Mingyang (徐名扬), ZHANG Shuang (张爽), YUAN Jianfei (袁健飞). Damage Characteristics of the Logical Chip Module Due to Plasma Created by Hypervelocity Impacts[J]. Plasma Science and Technology, 2016, 18(4): 412-416. DOI: 10.1088/1009-0630/18/4/14
    [7]HAN Qing (韩卿), WANG Jing (王敬), ZHANG Lianzhu (张连珠). PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen[J]. Plasma Science and Technology, 2016, 18(1): 72-78. DOI: 10.1088/1009-0630/18/1/13
    [8]TANG Enling (唐恩凌), XIANG Shenghai (相升海), YANG Minghai (杨明海), LI Lexin (李乐新). Sweep Langmuir Probe and Triple Probe Diagnostics for Transient Plasma Produced by Hypervelocity Impact[J]. Plasma Science and Technology, 2012, 14(8): 747-753. DOI: 10.1088/1009-0630/14/8/12
    [9]TIAN Lixia (田丽霞), LIU Mantian (刘慢天), ZHU Jingjun (朱敬军), AN Zhu (安竹), WANG Baoyi (王宝义), QIU Xiubo (秦秀波). Preliminary Measurement of the K-Shell Ionization Cross Sections of Ti by Positron Impact in the Low Energy Region[J]. Plasma Science and Technology, 2012, 14(5): 434-437. DOI: 10.1088/1009-0630/14/5/24
    [10]XI Yanbin (奚衍斌), LIU Yue (刘悦). FDTD Simulation on Power Absorption of Terahertz Electromagnetic Waves in Dense Plasma[J]. Plasma Science and Technology, 2012, 14(1): 5-8. DOI: 10.1088/1009-0630/14/1/02
  • Cited by

    Periodical cited type(4)

    1. Taghinejad, J., Niknam, A.R., Ghahyazi, M.R. et al. Molecular dynamics simulations of Ar+ bombardment of Fe(0, 0, 1), (1, 0, 1), and (1, 1, 1) surfaces: Study of threshold energy and angular characteristics of sputtering. Vacuum, 2023. DOI:10.1016/j.vacuum.2023.112312
    2. Kim, H.T., Jung, C.M., Kim, S.H. et al. Review of Plasma Processing for Polymers and Bio-Materials Using a Commercial Frequency (50/60 Hz)-Generated Discharge. Polymers, 2023, 15(13): 2850. DOI:10.3390/polym15132850
    3. Kang, H., Lee, S.H., Kim, K. Wettability of polytetrafluoroethylene surfaces by plasma etching modifications. PLoS ONE, 2023, 18(3 MARCH): e0282352. DOI:10.1371/journal.pone.0282352
    4. Wang, Y., Guo, X., Zhang, H. et al. Four-way purification of automobile exhaust over woody La0.8Ce0.2Fe0.3Co0.7O3 perovskite-type catalysts enhanced by NTP. Environmental Progress and Sustainable Energy, 2023. DOI:10.1002/ep.14238

    Other cited types(0)

Catalog

    Figures(7)

    Article views (140) PDF downloads (103) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return