Advanced Search+
Bin ZHU, Qiwei LI, Yanan GAO, Yan YAN, Yimin ZHU, Li XU. Improving plasma sterilization by constructing a plasma photocatalytic system with a needle array corona discharge and Au plasmonic nanocatalyst[J]. Plasma Science and Technology, 2023, 25(1): 015505. DOI: 10.1088/2058-6272/ac7db9
Citation: Bin ZHU, Qiwei LI, Yanan GAO, Yan YAN, Yimin ZHU, Li XU. Improving plasma sterilization by constructing a plasma photocatalytic system with a needle array corona discharge and Au plasmonic nanocatalyst[J]. Plasma Science and Technology, 2023, 25(1): 015505. DOI: 10.1088/2058-6272/ac7db9

Improving plasma sterilization by constructing a plasma photocatalytic system with a needle array corona discharge and Au plasmonic nanocatalyst

More Information
  • Corresponding author:

    Yimin ZHU, E-mail: ntp@dlmu.edu.cn

    Li XU, E-mail: xuli3021@gmail.com

  • Received Date: May 20, 2022
  • Revised Date: June 28, 2022
  • Accepted Date: June 30, 2022
  • Available Online: December 05, 2023
  • Published Date: October 30, 2022
  • Efficient sterilization by a plasma photocatalytic system (PPS) requires strong synergy between plasma and photocatalyst to inactivate microorganisms while suppressing the formation of secondary pollutants. Here, we report that a PPS constructed from a needle array corona discharge and Au/TiO2 plasmonic nanocatalyst could remarkably improve the sterilization of Escherichia coli (E. coli) and alleviate formation of the discharge pollutant O3. At 6 kV, the combination of corona discharge and Au/TiO2 achieves sterilization efficiency of 100% within an exposure time of 5 min. At 5 kV and an exposure time of 8 min, the presence of Au/TiO2 improves sterilization efficiency of the corona discharge from 73% to 91% and reduces the O3 concentration from 0.38 to 0.04 ppm, whereas the presence of TiO2 reduces the sterilization efficiency and O3 concentration to 66% and 0.17 ppm, respectively. The Au/TiO2 in the PPS enables a uniform corona discharge, enhances the interaction between plasma, E. coli and nanocatalysts, and suppresses the formation of O3. Further, the Au/TiO2 can be excited by ultraviolet–visible light emitted from the plasma to generate electron–hole pairs, and thus contributes to the formation of reactive radicals and the oxidative inactivation of E. coli. The PPS constructed from a needle array corona discharge and Au-based plasmonic nanocatalyst provides a promising approach for developing high-efficiency sterilization techniques.

  • We gratefully acknowledge financial support from National Natural Science Foundation of China (Nos. 52041001, 21808024), Natural Science Foundation of Liaoning Province (No. 2020-MS-126) and Special Foundation for Key Fields of Colleges and Universities in Guangdong Province (No. 2021ZDZX4094).

  • [1]
    Cheng Y et al 2019 Build. Environ. 147 11 doi: 10.1016/j.buildenv.2018.10.009
    [2]
    Ji S H et al 2020 J. Phys. D: Appl. Phys. 53 494002 doi: 10.1088/1361-6463/aba92e
    [3]
    Alimohammadi M and Naderi M 2021 Ozone Sci. Eng. 43 21 doi: 10.1080/01919512.2020.1822149
    [4]
    Lerouge S et al 2000 Plasmas Polym. 5 31 doi: 10.1023/A:1009504209276
    [5]
    Moisan M et al 2001 Int. J. Pharmaceut. 226 1 doi: 10.1016/S0378-5173(01)00752-9
    [6]
    Lerouge S, Wertheimer M R and Yahia L H 2001 Plasmas Polym. 6 175 doi: 10.1023/A:1013196629791
    [7]
    Yardimci O and Setlow P 2010 IEEE Trans. Plasma Sci. 38 973 doi: 10.1109/TPS.2010.2041674
    [8]
    Jung J S and Kim J G 2017 J. Electrostat. 86 12 doi: 10.1016/j.elstat.2016.12.011
    [9]
    Patinglag L et al 2021 Water Res. 201 117321 doi: 10.1016/j.watres.2021.117321
    [10]
    Nasiru M M et al 2021 Compr. Rev. Food Sci. Food Saf. 20 2626 doi: 10.1111/1541-4337.12740
    [11]
    Semmler M L et al 2020 Cancers 12 269 doi: 10.3390/cancers12020269
    [12]
    Setlow P 2006 J. Appl. Microbiol. 101 514 doi: 10.1111/j.1365-2672.2005.02736.x
    [13]
    Coleman W H et al 2007 J. Bacteriol. 189 8458 doi: 10.1128/JB.01242-07
    [14]
    Vizárová K et al 2021 J. Cult. Herit. 47 28 doi: 10.1016/j.culher.2020.09.016
    [15]
    Nicol M J et al 2020 Sci Rep. 10 3066 doi: 10.1038/s41598-020-59652-6
    [16]
    Ohkawa H et al 2006 Surf. Coat. Technol. 200 5829 doi: 10.1016/j.surfcoat.2005.08.124
    [17]
    Sharma A et al 2006 IEEE Trans. Plasma Sci. 34 1290 doi: 10.1109/TPS.2006.878377
    [18]
    Kang S K et al 2011 Appl. Phys. Lett. 98 143702 doi: 10.1063/1.3574639
    [19]
    Yan Y et al 2021 Plasma Chem. Plasma Process. 41 335 doi: 10.1007/s11090-020-10125-8
    [20]
    Ochiai T et al 2012 Chem. Eng. J. 209 313 doi: 10.1016/j.cej.2012.07.139
    [21]
    Zhu B et al 2019 Plasma Sci. Technol. 21 115503 doi: 10.1088/2058-6272/ab3668
    [22]
    Chavadej S et al 2007 J. Mol. Catal. A: Chem. 263 128 doi: 10.1016/j.molcata.2006.08.061
    [23]
    Magureanu M et al 2005 Appl. Catal. B: Environ. 61 12 doi: 10.1016/j.apcatb.2005.04.007
    [24]
    Gharib-Abou Ghaida S et al 2016 Chem. Eng. J. 292 276 doi: 10.1016/j.cej.2016.02.029
    [25]
    Zhu B et al 2018 Plasma Process. Polym. 15 1700215 doi: 10.1002/ppap.201700215
    [26]
    Ueda T et al 2019 J. Biomed. Mater. Res. 107 991 doi: 10.1002/jbm.a.36624
    [27]
    Armelao L et al 2007 Nanotechnology 18 375709 doi: 10.1088/0957-4484/18/37/375709
    [28]
    Li X S et al 2019 Catal. Today 337 132 doi: 10.1016/j.cattod.2019.03.033
    [29]
    Zhu B et al 2021 J. Hazard. Mater. 402 123508 doi: 10.1016/j.jhazmat.2020.123508
    [30]
    Li M et al 2018 Plasma Chem. Plasma Process. 38 1063 doi: 10.1007/s11090-018-9902-6
    [31]
    Li M et al 2018 Vacuum 157 249 doi: 10.1016/j.vacuum.2018.08.058
    [32]
    Zhu B et al 2020 Chem. Eng. J. 381 122599 doi: 10.1016/j.cej.2019.122599
    [33]
    Linic S, Christopher P and Ingram D B 2011 Nat. Mater. 10 911 doi: 10.1038/nmat3151
    [34]
    Zhang X M et al 2013 Rep. Prog. Phys. 76 046401 doi: 10.1088/0034-4885/76/4/046401
    [35]
    Sun Z G et al 2018 Plasma Process. Polym. 15 1800095 doi: 10.1002/ppap.201800095
    [36]
    Sarina S, Waclawik E R and Zhu H Y 2013 Green Chem. 15 1814 doi: 10.1039/c3gc40450a
    [37]
    Estifaee P et al 2019 Sci Rep. 9 2326 doi: 10.1038/s41598-019-38838-7
    [38]
    Ziuzina D et al 2013 J. Appl. Microbiol. 114 778 doi: 10.1111/jam.12087
    [39]
    Laroussi M 2005 Plasma Process. Polym. 2 391 doi: 10.1002/ppap.200400078
    [40]
    Kim H H, Kim J H and Ogata A 2009 J. Phys. D: Appl. Phys. 42 135210 doi: 10.1088/0022-3727/42/13/135210
  • Related Articles

    [1]Jun DENG (邓俊), Liming HE (何立明), Xingjian LIU (刘兴建), Yi CHEN (陈一). Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber[J]. Plasma Science and Technology, 2018, 20(12): 125502. DOI: 10.1088/2058-6272/aacdef
    [2]Pedro AFFONSO NOBREGA, Alain GAUNAND, Vandad ROHANI, François CAUNEAU, Laurent FULCHERI. Applying chemical engineering concepts to non-thermal plasma reactors[J]. Plasma Science and Technology, 2018, 20(6): 65512-065512. DOI: 10.1088/2058-6272/aab301
    [3]Yi WU (吴翊), Yufei CUI (崔彧菲), Jiawei DUAN (段嘉炜), Hao SUN (孙昊), Chunlin WANG (王春林), Chunping NIU (纽春萍). Influence of arc current and pressure on non-chemical equilibrium air arc behavior[J]. Plasma Science and Technology, 2018, 20(1): 14021-014021. DOI: 10.1088/2058-6272/aa9325
    [4]Gui LI (李桂), Muyang QIAN (钱沐杨), Sanqiu LIU (刘三秋), Huaying CHEN (陈华英), Chunsheng REN (任春生), Dezhen WANG (王德真). A numerical simulation study on active species production in dense methane-air plasma discharge[J]. Plasma Science and Technology, 2018, 20(1): 14004-014004. DOI: 10.1088/2058-6272/aa8f3c
    [5]N KHADIR, K KHODJA, A BELASRI. Methane conversion using a dielectric barrier discharge reactor at atmospheric pressure for hydrogen production[J]. Plasma Science and Technology, 2017, 19(9): 95502-095502. DOI: 10.1088/2058-6272/aa6d6d
    [6]HE Yuchen (何雨辰), Satoshi UEHARA, Hidemasa TAKANA, Hideya NISHIYAMA. Numerical Modelling and Simulation of Chemical Reactions in a Nano-Pulse Discharged Bubble for Water Treatment[J]. Plasma Science and Technology, 2016, 18(9): 924-932. DOI: 10.1088/1009-0630/18/9/09
    [7]HU Shuanghui (胡爽慧), WANG Baowei (王保伟), LV Yijun (吕一军), YAN Wenjuan (闫文娟). Conversion of Methane to C2 Hydrocarbons and Hydrogen Using a Gliding Arc Reactor[J]. Plasma Science and Technology, 2013, 15(6): 555-561. DOI: 10.1088/1009-0630/15/6/13
    [8]LI Zhihong (李志宏), GUO Bing (郭冰), LI Yunju (李云居), SU Jun (苏俊), LI Ertao (李二涛), BAI Xixiang (白希祥), WANG Youbao (王友宝), ZENG Sheng (曾晟), WANG Baoxiang (王宝祥), YAN Shengquan (颜胜权), LI Zhichang (李志常), et al. Determination of the Astrophysical S(E) Factors or Rates for Radiative Capture Reaction with One Nucleon Transfer Reaction[J]. Plasma Science and Technology, 2012, 14(6): 488-491. DOI: 10.1088/1009-0630/14/6/11
    [9]SUN Yanpeng (孙艳朋), NIE Yong (聂勇), WU Angshan (吴昂山), JI Dengxiang(姬登祥), YU Fengwen (于凤文), JI Jianbing (计建炳. Carbon Dioxide Reforming of Methane to Syngas by Thermal Plasma[J]. Plasma Science and Technology, 2012, 14(3): 252-256. DOI: 10.1088/1009-0630/14/3/12
    [10]WANG Kangjun, LI Xiaosong, ZHU Aimin. A Green Process for High-Concentration Ethylene and Hydrogen Production from Methane in a Plasma-Followed-by-Catalyst Reactor[J]. Plasma Science and Technology, 2011, 13(1): 77-81.

Catalog

    Figures(8)  /  Tables(1)

    Article views (122) PDF downloads (92) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return