Advanced Search+
Rumeng WANG, Yong YANG, Shaoyu WANG, Ming ZHANG. Dynamic performance of linear electromagnetic actuators in a stray magnetic field: theoretical analysis and experimental verification[J]. Plasma Science and Technology, 2022, 24(12): 124019. DOI: 10.1088/2058-6272/ac989b
Citation: Rumeng WANG, Yong YANG, Shaoyu WANG, Ming ZHANG. Dynamic performance of linear electromagnetic actuators in a stray magnetic field: theoretical analysis and experimental verification[J]. Plasma Science and Technology, 2022, 24(12): 124019. DOI: 10.1088/2058-6272/ac989b

Dynamic performance of linear electromagnetic actuators in a stray magnetic field: theoretical analysis and experimental verification

More Information
  • Corresponding author:

    Ming ZHANG, E-mail: zhangming@hust.edu.cn

  • Received Date: August 12, 2022
  • Revised Date: September 19, 2022
  • Accepted Date: October 08, 2022
  • Available Online: December 05, 2023
  • Published Date: December 22, 2022
  • Linear electromagnetic actuators (LEAs) are widely used in tokamaks, but they are extremely sensitive to and are prone to fail in a high-strength stray magnetic field (SMF), which is usually a concomitant with tokamaks. In this paper, a multi-physics coupling analysis model of LEA, including magnetic field, electric circuit and mechanical motion, is proposed, and the dynamic characteristics of LEAs in SMFs are studied in detail based on the proposed model. The failure mechanism of LEAs in SMFs is revealed, and the influence of SMFs on the dynamic performance of LEAs is studied and quantified. It is shown that the failure threshold of the LEA selected in this work under the rated condition is 27 mT and 14 mT in the positive and negative direction, respectively. Under a typical SMF of 10 mT in the negative direction, the closing time of the LEA will be extended by 40%, while its opening time will be shortened by about 10%. Experimental tests are also conducted, which verify the validity of the proposed model and the analysis results. This paper provides a basis for the diamagnetic optimization design of LEA, and it is of great significance to ensure the reliable operation of the tokamak.

  • This work is supported in part by the National Key R&D Program of China (No. 2017YFE0301800), in part by National Natural Science Foundation of China (No. 51821005), and in part by the Comprehensive Research Facility for Fusion Technology Program of China (No. 2018-000052-73-01-001228).

  • [1]
    Kozioziemski B J et al 2007 Nucl. Fusion 47 1 doi: 10.1088/0029-5515/47/1/001
    [2]
    Benfatto I et al 2005 Fusion Eng. Des. 75–79 235 doi: 10.1016/j.fusengdes.2005.06.136
    [3]
    Roccella R 2019 Static and Transient Magnetic Field Maps at level B1 Tokamak Complex (Cadarache: ITER)
    [4]
    Roccella M 2017 Assessment of Magnetic Field and its Maximum Time Derivative in Tokamak Building (Cadarache: ITER)
    [5]
    Wang R M et al 2022 J. Magn. Magn. Mater. 550 169125 doi: 10.1016/j.jmmm.2022.169125
    [6]
    Hourtoule J et al 2005 Fusion Eng. Des. 75–79 179 doi: 10.1016/j.fusengdes.2005.06.278
    [7]
    De Lorenzi A et al 2005 Fusion Eng. Des. 75–79 33 doi: 10.1016/j.fusengdes.2005.06.267
    [8]
    Tripathy S et al 2020 Energy 193 116740 doi: 10.1016/j.energy.2019.116740
    [9]
    Wang R M et al 2021 Fusion Eng. Des. 167 112344 doi: 10.1016/j.fusengdes.2021.112344
    [10]
    Tapia C C et al 2020 Measurement 166 108174 doi: 10.1016/j.measurement.2020.108174
    [11]
    Lee J et al 2012 Finite Elem. Anal. Des. 58 44 doi: 10.1016/j.finel.2012.04.007
    [12]
    Clark R E et al 2005 IEEE Trans. Magn. 41 1163 doi: 10.1109/TMAG.2004.843342
    [13]
    Li Y L et al 2020 IEEE Trans. Magn. 56 7506004 doi: 10.1109/TMAG.2019.2952834
    [14]
    Zhai G F, Wang Q Y and Ren W B 2008 J. Zhejiang Univ. Sci. A 9 577 doi: 10.1631/jzus.A0720004
    [15]
    Yang W Y, Zhou X and Zhai G F 2007 Trans China Electrotech Soc 22 179 (in Chinese) doi: 10.19595/j.cnki.1000-6753.tces.2007.08.033
    [16]
    Wang R M et al 2022 IEEE Trans. Plasma Sci. 50 4267 doi: 10.1109/TPS.2022.3169476
    [17]
    Yang Y et al 2018 IEEE Trans. Ind. Electron. 65 8204 doi: 10.1109/TIE.2018.2807420
    [18]
    Fang S H, Lin H Y and Ho S L 2009 IEEE Trans. Magn. 45 2990 doi: 10.1109/TMAG.2009.2015053
    [19]
    Smugala D 2021 IEEE Trans. Ind. Electron. 68 6152 doi: 10.1109/TIE.2020.3000132
    [20]
    Forrai A, Ueda T and Yumura T 2007 IEEE Trans. Ind. Electron. 54 1430 doi: 10.1109/TIE.2007.893077
    [21]
    Lin H Y et al 2013 IEEE Trans. Ind. Electron. 60 5148 doi: 10.1109/TIE.2012.2227907
    [22]
    Chin C S and Wheeler C 2013 IEEE Trans. Ind. Electron. 60 5315 doi: 10.1109/TIE.2012.2227909
    [23]
    dos Santos Dias de Moraes P M and Perin A J 2008 IEEE Trans. Ind. Electron. 55 861 doi: 10.1109/TIE.2007.909073
    [24]
    Espinosa A G et al 2008 IEEE Trans. Ind. Electron. 55 3742 doi: 10.1109/TIE.2008.925773
    [25]
    Tang L F, Han Z P and Xu Z H 2021 IEEE Trans. Ind. Electron. 68 6064 doi: 10.1109/TIE.2020.2994872
    [26]
    Hey J et al 2014 IEEE Trans. Ind. Electron. 61 5453 doi: 10.1109/TIE.2014.2301727
    [27]
    Ramirez-Laboreo E, Sagues C and Llorente S 2017 IEEE Trans. Ind. Electron. 64 535 doi: 10.1109/TIE.2016.2605622
    [28]
    Rao Y 2016 Test Method for ITER Equipment for Static D.C. Magnetic Fields (Cadarache: ITER)
  • Related Articles

    [1]Tianchi WANG, Chuyu SUN, Youheng YANG, Haiyang WANG, Linshen XIE, Tao HUANG, Yingchao DU, Wei CHEN. Comparative study of pulsed breakdown processes and mechanisms in self-triggered four-electrode pre-ionized switches[J]. Plasma Science and Technology, 2022, 24(11): 115504. DOI: 10.1088/2058-6272/ac7c61
    [2]Tianchi WANG (王天驰), Yingchao DU (杜应超), Wei CHEN (陈伟), Junna LI (李俊娜), Haiyang WANG (王海洋), Tao HUANG (黄涛), Linshen XIE (谢霖燊), Le CHENG (程乐), Ling SHI (石凌). A low-jitter self-triggered spark-discharge pre-ionization switch: primary research on its breakdown characteristics and working mechanisms[J]. Plasma Science and Technology, 2021, 23(11): 115508. DOI: 10.1088/2058-6272/ac2420
    [3]Riaz KHAN, Sehrish SHAKIR, Ahmad ALI, Muhammad Khawar AYUB, Moazzam NAZIR, Zia UR-REHMAN, Abdul QAYYUM, Muhammad Athar NAVEED, Sarfraz AHMAD, Zahoor AHMAD, Rafaqat ALI, Shahid HUSSAIN. Microwave-assisted pre-ionization experiments on GLAST-III[J]. Plasma Science and Technology, 2021, 23(8): 85102-085102. DOI: 10.1088/2058-6272/ac050c
    [4]Wei YOU (尤玮), Hong LI (李弘), Wenzhe MAO (毛文哲), Wei BAI (白伟), Cui TU (涂翠), Bing LUO (罗兵), Zichao LI (李子超), Yolbarsop ADIL (阿迪里江), Jintong HU (胡金童), Bingjia XIAO (肖炳甲), Qingxi YANG (杨庆喜), Jinlin XIE (谢锦林), Tao LAN (兰涛), Adi LIU (刘阿娣), Weixing DING (丁卫星), Chijin XIAO (肖持进), Wandong LIU (刘万东). Design of the poloidal field system for KTX[J]. Plasma Science and Technology, 2018, 20(11): 115601. DOI: 10.1088/2058-6272/aac8d5
    [5]Yanhui JIA (贾艳辉), Juanjuan CHEN (陈娟娟), Ning GUO (郭宁), Xinfeng SUN (孙新锋), Chenchen WU (吴辰宸), Tianping ZHANG (张天平). 2D hybrid-PIC simulation of the two and three-grid system of ion thruster[J]. Plasma Science and Technology, 2018, 20(10): 105502. DOI: 10.1088/2058-6272/aace52
    [6]Sen WANG (王森), Qiping YUAN (袁旗平), Bingjia XIAO (肖炳甲). Development of the simulation platform between EAST plasma control system and the tokamak simulation code based on Simulink[J]. Plasma Science and Technology, 2017, 19(3): 35601-035601. DOI: 10.1088/2058-6272/19/3/035601
    [7]LUO Zhiren (罗志仁), LIU Xufeng (刘旭峰), DU Shuangsong (杜双松), WANG Zhongwei (王忠伟), SONG Yuntao (宋云涛). Integrated Design System of Toroidal Field Coil for CFETR[J]. Plasma Science and Technology, 2016, 18(9): 960-966. DOI: 10.1088/1009-0630/18/9/14
    [8]CHEN Yun (陈云), ZHANG Jian (张健). Ultra-Low Breakdown Voltage of Field Ionization in Atmospheric Air Based on Silicon Nanowires[J]. Plasma Science and Technology, 2013, 15(11): 1081-1087. DOI: 10.1088/1009-0630/15/11/01
    [9]QIU Lilong (邱立龙), ZHUANG Ming (庄明), MAO Jin (毛晋), HU Liangbing (胡良兵), SHENG Linhai (盛林海). Optimization analysis and simulation of the EAST cryogenic system[J]. Plasma Science and Technology, 2012, 14(11): 1030-1034. DOI: 10.1088/1009-0630/14/11/13
    [10]WANG Zesong (王泽松), ZHANG Zaodi (张早娣), HE Jun (何俊), LEE Jae Choon (李载春), LIU Chuansheng Liu (刘传胜), WU Xianying (吴先映), FU Dejun (付德君). A Computerized System for the Measurement of Nanomaterial Field Emission and Ionization[J]. Plasma Science and Technology, 2012, 14(9): 819-823. DOI: 10.1088/1009-0630/14/9/09
  • Cited by

    Periodical cited type(7)

    1. Xie, W., Liang, Y., Jiang, Z. et al. Application of three-dimensional MHD equilibrium calculation coupled with plasma response to island divertor experiments on J-TEXT. Plasma Science and Technology, 2024, 26(11): 115104. DOI:10.1088/2058-6272/ad70e1
    2. Ding, Y., Wang, N., Chen, Z. et al. Overview of the recent experimental research on the J-TEXT tokamak. Nuclear Fusion, 2024, 64(11): 112005. DOI:10.1088/1741-4326/ad336e
    3. Xu, X., Chen, Z.P., Yang, Q.H. et al. Investigation on the edge cooling threshold of the density limit in the J-TEXT tokamak with limiter and divertor configurations. Plasma Physics and Controlled Fusion, 2024, 66(7): 075010. DOI:10.1088/1361-6587/ad4673
    4. Li, C., Liang, Y., Jiang, Z. et al. Characteristics of the SOL ion-to-electron temperature ratio on the J-TEXT tokamak with different plasma configurations. Plasma Science and Technology, 2024, 26(2): 025101. DOI:10.1088/2058-6272/ad0c1e
    5. Guo, J., Chen, Z., Yang, Q. et al. Simulation of Influence of Plasma Conductivity Anisotropy on Electric Field Distribution in the Divertor Target Biasing Configuration. 2024. DOI:10.1109/CIYCEE63099.2024.10846135
    6. Xu, X., Chen, Z.P., Yang, Q.H. et al. Investigation of edge plasma cooling approaching the density limit in limiter and divertor configurations on J-TEXT. 2023.
    7. Wang, J., Chen, Z., Cheng, Z. et al. Impurity emissivity tomographic reconstruction by CCD imaging system on J-TEXT. 2023. DOI:10.1109/CIYCEE59789.2023.10401533

    Other cited types(0)

Catalog

    Figures(20)

    Article views (51) PDF downloads (30) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return