Citation: | Bangyou ZHU, Shaoxiang MA, Hongqi ZHANG, Zhiheng LI, Ming ZHANG, Yuan PAN. Fault diagnosis algorithm for 3-phase passive rectifiers based on frequency-domain analysis for acceleration grid power supply in CFETR NBI system[J]. Plasma Science and Technology, 2022, 24(12): 124004. DOI: 10.1088/2058-6272/ac9aa9 |
The acceleration grid power supply (AGPS) is a crucial part of the Negative-ion Neutral Beam Injection system in the China Fusion Engineering Test Reactor, which includes a 3-phase passive (diode) rectifier. To diagnose and localize faults in the rectifier, this paper proposes a frequency-domain analysis-based fault diagnosis algorithm for the rectifier in AGPS. First, time-domain expressions and spectral characteristics of the output voltage of the TPTL-NPC inverter-based power supply are analyzed. Then, frequency-domain analysis-based fault diagnosis and frequency-domain analysis-based sub-fault diagnosis algorithms are proposed to diagnose open circuit (OC) faults of diode(s), which benefit from the analysis of harmonics magnitude and phase-angle of the output voltage. Only a fundamental period is needed to diagnose and localize exact faults, and a strong Variable-duration Fault Detection Method is proposed to identify acceptable ripple from OC faults. Detailed simulations and experimental results demonstrate the effectiveness, quickness, and robustness of the proposed algorithms, and the diagnosis algorithms proposed in this article provide a significant method for the fault diagnosis of other rectifiers and converters.
The authors would like to thank the HVPS group as well as the other members of the J-TEXT team for their assistance with module testing. This work was supported by the National Key R & D Program of China (No. 2017YFE0300104) and National Natural Science Foundation of China (No. 51821005).
[1] |
Zanotto L, Ferro A and Toigo V 2009 Fusion Eng. Des. 84 2037 doi: 10.1016/j.fusengdes.2008.11.020
|
[2] |
Wan B N et al 2014 IEEE Trans. Plasma Sci. 42 495 doi: 10.1109/TPS.2013.2296939
|
[3] |
Wang D Y et al 2020 Plasma Sci. Technol. 22 085601 doi: 10.1088/2058-6272/ab8d9c
|
[4] |
Qiao W and Lu D G 2015 IEEE Trans. Ind. Electron. 62 6536 doi: 10.1109/TIE.2015.2422112
|
[5] |
Yang Z M and Chai Y 2016 Renew. Sustainable Energy Rev. 66 345 doi: 10.1016/j.rser.2016.08.006
|
[6] |
Abadi M B, Mendes A M S and Cruz S M Â 2016 IET Electr. Power Appl. 10 623 doi: 10.1049/iet-epa.2015.0644
|
[7] |
Gao Z W et al 2015 IEEE Trans. Ind. Electron. 62 3757 doi: 10.1109/TIE.2015.2417501
|
[8] |
Lu B and Sharma S K 2009 IEEE Trans. Ind. Appl. 45 1770 doi: 10.1109/TIA.2009.2027535
|
[9] |
Yang S Y et al 2010 IEEE Trans. Power Electron. 25 2734 doi: 10.1109/TPEL.2010.2049377
|
[10] |
Zhuang G et al 2019 Nucl. Fusion 59 112010 doi: 10.1088/1741-4326/ab0e27
|
[11] |
Du Q X et al 2022 IEEE Trans. Power Electron. 37 485 doi: 10.1109/TPEL.2021.3095301
|
[12] |
Wang B R et al 2020 IEEE Trans. Power Electron. 35 924 doi: 10.1109/TPEL.2019.2912177
|
[13] |
Blaabjerg F et al 2006 IEEE Trans. Ind. Electron. 53 1398 doi: 10.1109/TIE.2006.881997
|
[14] |
Shi B P et al 2018 IEEE J. Emerg. Sel. Topics Power Electron. 6 770 doi: 10.1109/JESTPE.2017.2772788
|
[15] |
Zhang W et al 2014 IEEE Trans. Power Electron. 29 6319 doi: 10.1109/TPEL.2014.2304561
|
[16] |
Zhou D H and Tang Y 2019 IEEE J. Emerging Sel. Topics Power Electron. 7 2158 doi: 10.1109/JESTPE.2018.2888879
|
[17] |
Im W S et al 2013 IEEE Trans. Ind. Appl. 49 1539 doi: 10.1109/TIA.2013.2255111
|
[18] |
Sun C et al 2020 IEEE Trans. Power Electr. 35 6373 doi: 10.1109/TPEL.2019.2951431
|
[19] |
Amini J et al 2017 IEEE Trans. Ind. Electron. 46 1818 doi: 10.1109/TIE.2016.2624722
|
[20] |
Wu F et al 2018 IEEE Trans. Power Electron. 33 3411 doi: 10.1109/TPEL.2017.2704589
|
[21] |
Han P et al 2019 IEEE Trans. Ind. Appl. 55 3863 doi: 10.1109/TIA.2019.2931963
|
[22] |
Tian L S, Wu F and Zhao J 2016 Electron. Lett. 52 1795 doi: 10.1049/el.2016.2713
|
[23] |
He J B et al 2017 IEEE Trans. Ind. Appl. 53 2826 doi: 10.1109/TIA.2017.2665630
|
[24] |
Rongjie W et al 2013 Int. J. Electr. Power Energy Syst. 52 266 doi: 10.1016/j.ijepes.2013.03.029
|
[25] |
Xu L et al 2018 Neurocomputing 311 1 doi: 10.1016/j.neucom.2018.05.040
|
[26] |
Shi T C et al 2019 IEEE Access 7 66595 doi: 10.1109/ACCESS.2019.2917311
|
[27] |
Sobanski P and Kaminski M 2019 IET Power Electron. 12 2189 doi: 10.1049/iet-pel.2018.5330
|
[28] |
Kou L et al 2020 IET Power Electron. 13 1236 doi: 10.1049/iet-pel.2019.0835
|
[29] |
Kamel T, Biletskiy Y and Chang L C 2015 IEEE Trans. Ind. Electron. 62 6496 doi: 10.1109/TIE.2015.2420627
|
[1] | Tianchi WANG, Chuyu SUN, Youheng YANG, Haiyang WANG, Linshen XIE, Tao HUANG, Yingchao DU, Wei CHEN. Comparative study of pulsed breakdown processes and mechanisms in self-triggered four-electrode pre-ionized switches[J]. Plasma Science and Technology, 2022, 24(11): 115504. DOI: 10.1088/2058-6272/ac7c61 |
[2] | Tianchi WANG (王天驰), Yingchao DU (杜应超), Wei CHEN (陈伟), Junna LI (李俊娜), Haiyang WANG (王海洋), Tao HUANG (黄涛), Linshen XIE (谢霖燊), Le CHENG (程乐), Ling SHI (石凌). A low-jitter self-triggered spark-discharge pre-ionization switch: primary research on its breakdown characteristics and working mechanisms[J]. Plasma Science and Technology, 2021, 23(11): 115508. DOI: 10.1088/2058-6272/ac2420 |
[3] | Riaz KHAN, Sehrish SHAKIR, Ahmad ALI, Muhammad Khawar AYUB, Moazzam NAZIR, Zia UR-REHMAN, Abdul QAYYUM, Muhammad Athar NAVEED, Sarfraz AHMAD, Zahoor AHMAD, Rafaqat ALI, Shahid HUSSAIN. Microwave-assisted pre-ionization experiments on GLAST-III[J]. Plasma Science and Technology, 2021, 23(8): 85102-085102. DOI: 10.1088/2058-6272/ac050c |
[4] | Wei YOU (尤玮), Hong LI (李弘), Wenzhe MAO (毛文哲), Wei BAI (白伟), Cui TU (涂翠), Bing LUO (罗兵), Zichao LI (李子超), Yolbarsop ADIL (阿迪里江), Jintong HU (胡金童), Bingjia XIAO (肖炳甲), Qingxi YANG (杨庆喜), Jinlin XIE (谢锦林), Tao LAN (兰涛), Adi LIU (刘阿娣), Weixing DING (丁卫星), Chijin XIAO (肖持进), Wandong LIU (刘万东). Design of the poloidal field system for KTX[J]. Plasma Science and Technology, 2018, 20(11): 115601. DOI: 10.1088/2058-6272/aac8d5 |
[5] | Yanhui JIA (贾艳辉), Juanjuan CHEN (陈娟娟), Ning GUO (郭宁), Xinfeng SUN (孙新锋), Chenchen WU (吴辰宸), Tianping ZHANG (张天平). 2D hybrid-PIC simulation of the two and three-grid system of ion thruster[J]. Plasma Science and Technology, 2018, 20(10): 105502. DOI: 10.1088/2058-6272/aace52 |
[6] | Sen WANG (王森), Qiping YUAN (袁旗平), Bingjia XIAO (肖炳甲). Development of the simulation platform between EAST plasma control system and the tokamak simulation code based on Simulink[J]. Plasma Science and Technology, 2017, 19(3): 35601-035601. DOI: 10.1088/2058-6272/19/3/035601 |
[7] | LUO Zhiren (罗志仁), LIU Xufeng (刘旭峰), DU Shuangsong (杜双松), WANG Zhongwei (王忠伟), SONG Yuntao (宋云涛). Integrated Design System of Toroidal Field Coil for CFETR[J]. Plasma Science and Technology, 2016, 18(9): 960-966. DOI: 10.1088/1009-0630/18/9/14 |
[8] | CHEN Yun (陈云), ZHANG Jian (张健). Ultra-Low Breakdown Voltage of Field Ionization in Atmospheric Air Based on Silicon Nanowires[J]. Plasma Science and Technology, 2013, 15(11): 1081-1087. DOI: 10.1088/1009-0630/15/11/01 |
[9] | QIU Lilong (邱立龙), ZHUANG Ming (庄明), MAO Jin (毛晋), HU Liangbing (胡良兵), SHENG Linhai (盛林海). Optimization analysis and simulation of the EAST cryogenic system[J]. Plasma Science and Technology, 2012, 14(11): 1030-1034. DOI: 10.1088/1009-0630/14/11/13 |
[10] | WANG Zesong (王泽松), ZHANG Zaodi (张早娣), HE Jun (何俊), LEE Jae Choon (李载春), LIU Chuansheng Liu (刘传胜), WU Xianying (吴先映), FU Dejun (付德君). A Computerized System for the Measurement of Nanomaterial Field Emission and Ionization[J]. Plasma Science and Technology, 2012, 14(9): 819-823. DOI: 10.1088/1009-0630/14/9/09 |
1. | Xie, W., Liang, Y., Jiang, Z. et al. Application of three-dimensional MHD equilibrium calculation coupled with plasma response to island divertor experiments on J-TEXT. Plasma Science and Technology, 2024, 26(11): 115104. DOI:10.1088/2058-6272/ad70e1 |
2. | Ding, Y., Wang, N., Chen, Z. et al. Overview of the recent experimental research on the J-TEXT tokamak. Nuclear Fusion, 2024, 64(11): 112005. DOI:10.1088/1741-4326/ad336e |
3. | Xu, X., Chen, Z.P., Yang, Q.H. et al. Investigation on the edge cooling threshold of the density limit in the J-TEXT tokamak with limiter and divertor configurations. Plasma Physics and Controlled Fusion, 2024, 66(7): 075010. DOI:10.1088/1361-6587/ad4673 |
4. | Li, C., Liang, Y., Jiang, Z. et al. Characteristics of the SOL ion-to-electron temperature ratio on the J-TEXT tokamak with different plasma configurations. Plasma Science and Technology, 2024, 26(2): 025101. DOI:10.1088/2058-6272/ad0c1e |
5. | Guo, J., Chen, Z., Yang, Q. et al. Simulation of Influence of Plasma Conductivity Anisotropy on Electric Field Distribution in the Divertor Target Biasing Configuration. 2024. DOI:10.1109/CIYCEE63099.2024.10846135 |
6. |
Xu, X., Chen, Z.P., Yang, Q.H. et al. Investigation of edge plasma cooling approaching the density limit in limiter and divertor configurations on J-TEXT. 2023.
![]() |
7. | Wang, J., Chen, Z., Cheng, Z. et al. Impurity emissivity tomographic reconstruction by CCD imaging system on J-TEXT. 2023. DOI:10.1109/CIYCEE59789.2023.10401533 |