Advanced Search+
Zhonghe JIANG, Yonghua DING, Bo RAO, Nengchao WANG, Yangbo LI, Jie HUANG. A brief review of the development and optimization of the three-dimensional magnetic configuration system in the J-TEXT tokamak[J]. Plasma Science and Technology, 2022, 24(12): 124014. DOI: 10.1088/2058-6272/aca18d
Citation: Zhonghe JIANG, Yonghua DING, Bo RAO, Nengchao WANG, Yangbo LI, Jie HUANG. A brief review of the development and optimization of the three-dimensional magnetic configuration system in the J-TEXT tokamak[J]. Plasma Science and Technology, 2022, 24(12): 124014. DOI: 10.1088/2058-6272/aca18d

A brief review of the development and optimization of the three-dimensional magnetic configuration system in the J-TEXT tokamak

More Information
  • Author Bio:

    Bo RAO, E-mail: borao@hust.edu.cn

  • Received Date: September 18, 2022
  • Revised Date: November 08, 2022
  • Accepted Date: November 08, 2022
  • Available Online: December 05, 2023
  • Published Date: December 13, 2022
  • The three-dimensional (3D) magnetic configuration system in the J-TEXT tokamak has featured in many experimental studies. The system mainly consists of three subsystems: the static resonant magnetic perturbation (SRMP) system, the dynamic resonant magnetic perturbation (DRMP) system and the helical coil system. The SRMP coil system consist of two kinds of coils, i.e. three six-loop coils and two five-loop coils. It can suppress tearing modes with a moderate strength, and may also cause mode locking with larger amplitude. The DRMP coil system consists of 12 single-turn saddle coils (DRMP1) and 12 double-turn saddle coils (DRMP2). Its magnetic field can be rotated at a few kHz, leading to either acceleration or deceleration of the tearing mode velocity and the plasma rotation. The helical coil system consists of two closed coils, and is currently under construction to provide external rotational transform in J-TEXT. The 3D magnetic configuration system can suppress tearing modes, preventing and avoiding the occurrence of major disruption.

  • The authors are very grateful for the help of the J-TEXT team. This work is supported by the National Magnetic Confinement Fusion Energy R & D Program of China (Nos. 2018YFE0309100 and 2018YFE0310300) and National Natural Science Foundation of China (Nos. 12075096, 11905077, 11905078, 11905079, 11905080, 12047526 and 51821005).

  • [1]
    Hender T C et al 2007 Nucl. Fusion 47 S128 doi: 10.1088/0029-5515/47/6/S03
    [2]
    de Vries P C et al 2011 Nucl. Fusion 51 053018 doi: 10.1088/0029-5515/51/5/053018
    [3]
    Sweeney R et al 2017 Nucl. Fusion 57 016019 doi: 10.1088/0029-5515/57/1/016019
    [4]
    Zhuang G et al 2011 Nucl. Fusion 51 094020 doi: 10.1088/0029-5515/51/9/094020
    [5]
    Ding Y H et al 2018 Plasma Sci. Technol. 20 125101 doi: 10.1088/2058-6272/aadcfd
    [6]
    Liang Y et al 2019 Nucl. Fusion 59 112016 doi: 10.1088/1741-4326/ab1a72
    [7]
    Wang N C et al 2022 Nucl. Fusion 62 042016 doi: 10.1088/1741-4326/ac3aff
    [8]
    1995 The Texas Experimental Tokamak: A plasma research facility. A proposal submitted to the Department of Energy in response to Program Notice 95-10: Innovations in toroidal magnetic confinement systems. DOE/ER/542-41-151 FRCR #470 University of Texas at Austin (https://doi.org/10.2172/468596)
    [9]
    Rao B et al 2013 Rev. Sci. Instrum. 84 043504 doi: 10.1063/1.4801461
    [10]
    Rao B et al 2013 Plasma Phys. Control. Fusion 55 122001 doi: 10.1088/0741-3335/55/12/122001
    [11]
    Huang J and Suzuki YJ-TEXT Team 2021 Plasma Fusion Res. 16 2403047 doi: 10.1585/pfr.16.2403047
    [12]
    McCool S C et al 1989 Nucl. Fusion 29 547 doi: 10.1088/0029-5515/29/4/001
    [13]
    Rao B et al 2013 Phys. Lett. A 377 315 doi: 10.1016/j.physleta.2012.11.043
    [14]
    Rao B et al 2014 Fusion Eng. Des. 89 378 doi: 10.1016/j.fusengdes.2014.03.038
    [15]
    Hu Q M et al 2012 Nucl. Fusion 52 083011 doi: 10.1088/0029-5515/52/8/083011
    [16]
    Jin W et al 2013 Plasma Phys. Control. Fusion 55 035010 doi: 10.1088/0741-3335/55/3/035010
    [17]
    Fitzpatrick R 1993 Nucl. Fusion 33 1049 doi: 10.1088/0029-5515/33/7/I08
    [18]
    Zeng W B et al 2014 Plasma Sci. Technol. 16 1074 doi: 10.1088/1009-0630/16/11/14
    [19]
    Yi B et al 2015 IEEE Trans. Plasma Sci. 43 594 doi: 10.1109/TPS.2014.2387851
    [20]
    Xu G et al 2018 Plasma Sci. Technol. 20 085601 doi: 10.1088/2058-6272/aabd2f
    [21]
    Li M et al 2019 IEEE Trans. Plasma Sci. 47 1458 doi: 10.1109/TPS.2018.2890587
    [22]
    Ohyabu N et al 1994 Nucl. Fusion 34 387 doi: 10.1088/0029-5515/34/3/I07
    [23]
    Wolf R C et al 2017 Nucl. Fusion 57 102020 doi: 10.1088/1741-4326/aa770d
    [24]
    Pandya M D et al 2005 Phys. Plasmas 22 110702 doi: 10.1063/1.4935396
    [25]
    Todo Y et al 2010 Plasma Fusion Res. 5 S2062 doi: 10.1585/pfr.5.S2062
    [26]
    Suzuki Y 2017 Plasma Phys. Control. Fusion 59 054008 doi: 10.1088/1361-6587/aa5adc
  • Related Articles

    [1]Tianchi WANG, Chuyu SUN, Youheng YANG, Haiyang WANG, Linshen XIE, Tao HUANG, Yingchao DU, Wei CHEN. Comparative study of pulsed breakdown processes and mechanisms in self-triggered four-electrode pre-ionized switches[J]. Plasma Science and Technology, 2022, 24(11): 115504. DOI: 10.1088/2058-6272/ac7c61
    [2]Tianchi WANG (王天驰), Yingchao DU (杜应超), Wei CHEN (陈伟), Junna LI (李俊娜), Haiyang WANG (王海洋), Tao HUANG (黄涛), Linshen XIE (谢霖燊), Le CHENG (程乐), Ling SHI (石凌). A low-jitter self-triggered spark-discharge pre-ionization switch: primary research on its breakdown characteristics and working mechanisms[J]. Plasma Science and Technology, 2021, 23(11): 115508. DOI: 10.1088/2058-6272/ac2420
    [3]Riaz KHAN, Sehrish SHAKIR, Ahmad ALI, Muhammad Khawar AYUB, Moazzam NAZIR, Zia UR-REHMAN, Abdul QAYYUM, Muhammad Athar NAVEED, Sarfraz AHMAD, Zahoor AHMAD, Rafaqat ALI, Shahid HUSSAIN. Microwave-assisted pre-ionization experiments on GLAST-III[J]. Plasma Science and Technology, 2021, 23(8): 85102-085102. DOI: 10.1088/2058-6272/ac050c
    [4]Wei YOU (尤玮), Hong LI (李弘), Wenzhe MAO (毛文哲), Wei BAI (白伟), Cui TU (涂翠), Bing LUO (罗兵), Zichao LI (李子超), Yolbarsop ADIL (阿迪里江), Jintong HU (胡金童), Bingjia XIAO (肖炳甲), Qingxi YANG (杨庆喜), Jinlin XIE (谢锦林), Tao LAN (兰涛), Adi LIU (刘阿娣), Weixing DING (丁卫星), Chijin XIAO (肖持进), Wandong LIU (刘万东). Design of the poloidal field system for KTX[J]. Plasma Science and Technology, 2018, 20(11): 115601. DOI: 10.1088/2058-6272/aac8d5
    [5]Yanhui JIA (贾艳辉), Juanjuan CHEN (陈娟娟), Ning GUO (郭宁), Xinfeng SUN (孙新锋), Chenchen WU (吴辰宸), Tianping ZHANG (张天平). 2D hybrid-PIC simulation of the two and three-grid system of ion thruster[J]. Plasma Science and Technology, 2018, 20(10): 105502. DOI: 10.1088/2058-6272/aace52
    [6]Sen WANG (王森), Qiping YUAN (袁旗平), Bingjia XIAO (肖炳甲). Development of the simulation platform between EAST plasma control system and the tokamak simulation code based on Simulink[J]. Plasma Science and Technology, 2017, 19(3): 35601-035601. DOI: 10.1088/2058-6272/19/3/035601
    [7]LUO Zhiren (罗志仁), LIU Xufeng (刘旭峰), DU Shuangsong (杜双松), WANG Zhongwei (王忠伟), SONG Yuntao (宋云涛). Integrated Design System of Toroidal Field Coil for CFETR[J]. Plasma Science and Technology, 2016, 18(9): 960-966. DOI: 10.1088/1009-0630/18/9/14
    [8]CHEN Yun (陈云), ZHANG Jian (张健). Ultra-Low Breakdown Voltage of Field Ionization in Atmospheric Air Based on Silicon Nanowires[J]. Plasma Science and Technology, 2013, 15(11): 1081-1087. DOI: 10.1088/1009-0630/15/11/01
    [9]QIU Lilong (邱立龙), ZHUANG Ming (庄明), MAO Jin (毛晋), HU Liangbing (胡良兵), SHENG Linhai (盛林海). Optimization analysis and simulation of the EAST cryogenic system[J]. Plasma Science and Technology, 2012, 14(11): 1030-1034. DOI: 10.1088/1009-0630/14/11/13
    [10]WANG Zesong (王泽松), ZHANG Zaodi (张早娣), HE Jun (何俊), LEE Jae Choon (李载春), LIU Chuansheng Liu (刘传胜), WU Xianying (吴先映), FU Dejun (付德君). A Computerized System for the Measurement of Nanomaterial Field Emission and Ionization[J]. Plasma Science and Technology, 2012, 14(9): 819-823. DOI: 10.1088/1009-0630/14/9/09
  • Cited by

    Periodical cited type(7)

    1. Xie, W., Liang, Y., Jiang, Z. et al. Application of three-dimensional MHD equilibrium calculation coupled with plasma response to island divertor experiments on J-TEXT. Plasma Science and Technology, 2024, 26(11): 115104. DOI:10.1088/2058-6272/ad70e1
    2. Ding, Y., Wang, N., Chen, Z. et al. Overview of the recent experimental research on the J-TEXT tokamak. Nuclear Fusion, 2024, 64(11): 112005. DOI:10.1088/1741-4326/ad336e
    3. Xu, X., Chen, Z.P., Yang, Q.H. et al. Investigation on the edge cooling threshold of the density limit in the J-TEXT tokamak with limiter and divertor configurations. Plasma Physics and Controlled Fusion, 2024, 66(7): 075010. DOI:10.1088/1361-6587/ad4673
    4. Li, C., Liang, Y., Jiang, Z. et al. Characteristics of the SOL ion-to-electron temperature ratio on the J-TEXT tokamak with different plasma configurations. Plasma Science and Technology, 2024, 26(2): 025101. DOI:10.1088/2058-6272/ad0c1e
    5. Guo, J., Chen, Z., Yang, Q. et al. Simulation of Influence of Plasma Conductivity Anisotropy on Electric Field Distribution in the Divertor Target Biasing Configuration. 2024. DOI:10.1109/CIYCEE63099.2024.10846135
    6. Xu, X., Chen, Z.P., Yang, Q.H. et al. Investigation of edge plasma cooling approaching the density limit in limiter and divertor configurations on J-TEXT. 2023.
    7. Wang, J., Chen, Z., Cheng, Z. et al. Impurity emissivity tomographic reconstruction by CCD imaging system on J-TEXT. 2023. DOI:10.1109/CIYCEE59789.2023.10401533

    Other cited types(0)

Catalog

    Figures(9)  /  Tables(1)

    Article views (68) PDF downloads (47) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return