Advanced Search+
Zhengkang REN, Da LI, Nengchao WANG, Feiyue MAO, Zhuo HUANG, Song ZHOU, Ruo JIA, Ying HE, Chengshuo SHEN, Abba Alhaji BALA, Bo RAO, Yonghua DING, the J-TEXT Team. The spectrum analysis of RMP coils with multiple connection modes and the design of high field side coils on J-TEXT[J]. Plasma Science and Technology, 2022, 24(12): 124020. DOI: 10.1088/2058-6272/aca45f
Citation: Zhengkang REN, Da LI, Nengchao WANG, Feiyue MAO, Zhuo HUANG, Song ZHOU, Ruo JIA, Ying HE, Chengshuo SHEN, Abba Alhaji BALA, Bo RAO, Yonghua DING, the J-TEXT Team. The spectrum analysis of RMP coils with multiple connection modes and the design of high field side coils on J-TEXT[J]. Plasma Science and Technology, 2022, 24(12): 124020. DOI: 10.1088/2058-6272/aca45f

The spectrum analysis of RMP coils with multiple connection modes and the design of high field side coils on J-TEXT

More Information
  • The phase difference Δξ between locked islands (2/1 and 3/1) has been found to influence the heat transport on the thermal quench during disruptions by numerical modeling [Hu Q et al 2019 Nucl. Fusion 59, 016005]. To verify this experimentally, a set of resonant magnetic perturbation (RMP) coils is required to excite coupled magnetic islands with different Δξ. The spectrum analysis shows that the current RMP coils on J-TEXT can only produce sufficient 2/1 and 3/1 RMP fields with a limited phase difference of Δξ∈[−75°, 75°]. In order to broaden the adjustable range of Δξ, a set of coils on the high field side (HFS) is proposed to generate 2/1 and 3/1 RMP fields with Δξ = 180°. As a result, RMPs with adjustable Δξ∈[−180°, 180°] and sufficient amplitudes could be achieved by applying the HFS coils and the low field side (LFS) coils. This work provides a feasible solution for flexible adjustment of the phase difference between m and m + 1 RMP, which might facilitate the study of major disruptions and their control.

  • This work is supported by the National Magnetic Confinement Fusion Energy R&D Program of China (Nos. 2018YFE0309102 and 2019YFE03010004) and National Natural Science Foundation of China (Nos. 12075096, 11905078, and 51821005).

  • [1]
    Wesson J A et al 1989 Nucl. Fusion 29 641 doi: 10.1088/0029-5515/29/4/009
    [2]
    Suttrop W et al 1997 Nucl. Fusion 37 119 doi: 10.1088/0029-5515/37/1/I09
    [3]
    Choi M J et al 2016 Nucl. Fusion 56 066013 doi: 10.1088/0029-5515/56/6/066013
    [4]
    Sweeney R et al 2018 Nucl. Fusion 58 056022 doi: 10.1088/1741-4326/aaaf0a
    [5]
    Du X D et al 2019 Phys. Plasmas 26 042505 doi: 10.1063/1.5085329
    [6]
    Hu Q M et al 2019 Nucl. Fusion 59 016005 doi: 10.1088/1741-4326/aaeb57
    [7]
    Paz-Soldan C et al 2014 Nucl. Fusion 54 073013 doi: 10.1088/0029-5515/54/7/073013
    [8]
    Park J K et al 2018 Nat. Phys. 14 1223 doi: 10.1038/s41567-018-0268-8
    [9]
    Schaffer M J et al 2009 ELM suppression by resonant magnetic perturbations at DⅢ-D 23rd IEEE/NPSS Symp. on Fusion Engineering (San Diego) (Piscataway, NJ: IEEE) 1
    [10]
    Suttrop W et al 2009 Fusion Eng. Des. 84 290 doi: 10.1016/j.fusengdes.2008.12.044
    [11]
    Sun Y W et al 2017 Nucl. Fusion 57 036007 doi: 10.1088/1741-4326/57/3/036007
    [12]
    Huang Z et al 2020 Nucl. Fusion 60 064003 doi: 10.1088/1741-4326/ab8859
    [13]
    Wang N C et al 2022 Rev. Mod. Plasma Phys. 6 26 doi: 10.1007/s41614-022-00090-4
    [14]
    Sun Y W et al 2015 Plasma Phys. Control. Fusion 57 045003 doi: 10.1088/0741-3335/57/4/045003
    [15]
    Mao F Y et al 2022 Plasma Sci. Technol. 24 124002 doi: 10.1088/2058-6272/ac9f2e
    [16]
    Zhang H W et al 2019 Phys. Plasmas 26 112502 doi: 10.1063/1.5116669
    [17]
    Fitzpatrick R 1993 Nucl. Fusion 33 1049 doi: 10.1088/0029-5515/33/7/I08
    [18]
    Fitzpatrick R 1998 Phys. Plasmas 5 3325 doi: 10.1063/1.873000
    [19]
    Zhang H W et al 2021 Plasma Phys. Control. Fusion 63 035011 doi: 10.1088/1361-6587/abd304
    [20]
    Hu Q M et al 2016 Nucl. Fusion 56 092009 doi: 10.1088/0029-5515/56/9/092009
  • Related Articles

    [1]Junwei JIA, Zhifeng LIU, Congyuan PAN, Huaqin XUE. Detection of Al, Mg, Ca, and Zn in copper slag by LIBS combined with calibration curve and PLSR methods[J]. Plasma Science and Technology, 2024, 26(2): 025507. DOI: 10.1088/2058-6272/ad1045
    [2]Duixiong SUN, Yarui WANG, Maogen SU, Weiwei HAN, Chenzhong DONG. Improved sensitivity on detection of Cu and Cr in liquids using glow discharge technology assisted with LIBS[J]. Plasma Science and Technology, 2022, 24(8): 084008. DOI: 10.1088/2058-6272/ac7639
    [3]Jinjia GUO (郭金家), Al-Salihi MAHMOUD, Nan LI (李楠), Jiaojian SONG (宋矫健), Ronger ZHENG (郑荣儿). Study of pressure effects on ocean in-situ detection using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34022-034022. DOI: 10.1088/2058-6272/aaf091
    [4]Tadatake SATO, Kenichi TASHIRO, Yoshizo KAWAGUCHI, Hideki OHMURA, Haruhisa AKIYAMA. Investigation of the factors affecting the limit of detection of laser-induced breakdown spectroscopy for surface inspection[J]. Plasma Science and Technology, 2019, 21(3): 34021-034021. DOI: 10.1088/2058-6272/aaf5ef
    [5]Liuyang ZHAN (詹浏洋), Xiaohong MA (马晓红), Weiqi FANG (方玮骐), Rui WANG (王锐), Zesheng LIU (刘泽生), Yang SONG (宋阳), Huafeng ZHAO (赵华凤). A rapid classification method of aluminum alloy based on laser-induced breakdown spectroscopy and random forest algorithm[J]. Plasma Science and Technology, 2019, 21(3): 34018-034018. DOI: 10.1088/2058-6272/aaf7bf
    [6]Chengxu LU (吕程序), Bo WANG (王博), Xunpeng JIANG (姜训鹏), Junning ZHANG (张俊宁), Kang NIU (牛康), Yanwei YUAN (苑严伟). Detection of K in soil using time-resolved laser-induced breakdown spectroscopy based on convolutional neural networks[J]. Plasma Science and Technology, 2019, 21(3): 34014-034014. DOI: 10.1088/2058-6272/aaef6e
    [7]Junwei JIA (贾军伟), Hongbo FU (付洪波), Zongyu HOU (侯宗余), Huadong WANG (王华东), Zhibo NI (倪志波), Fengzhong DONG (董凤忠). Calibration curve and support vector regression methods applied for quantification of cement raw meal using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34003-034003. DOI: 10.1088/2058-6272/aae3e1
    [8]Yao JIA (贾尧), Nanjing ZHAO (赵南京), Li FANG (方丽), Mingjun MA (马明俊), Deshuo MENG (孟德硕), Gaofang YIN (殷高方), Jianguo LIU (刘建国), Wenqing LIU (刘文清). Online calibration of laser-induced breakdown spectroscopy for detection of heavy metals in water[J]. Plasma Science and Technology, 2018, 20(9): 95503-095503. DOI: 10.1088/2058-6272/aac42f
    [9]MENG Deshuo (孟德硕), ZHAO Nanjing (赵南京), MA Mingjun (马明俊), WANG Yin (王寅), HU Li (胡丽), YU Yang (余洋), FANG Li (方丽), LIU Wenqing (刘文清). Heavy Metal Detection in Soils by Laser Induced Breakdown Spectroscopy Using Hemispherical Spatial Confinement[J]. Plasma Science and Technology, 2015, 17(8): 632-637. DOI: 10.1088/1009-0630/17/8/04
    [10]WEN Guanhong(温冠宏), SUN Duixiong(孙对兄), SU Maogen(苏茂根), DONG Chenzhong(董晨钟). LIBS Detection of Heavy Metal Elements in Liquid Solutions by Using Wood Pellet as Sample Matrix[J]. Plasma Science and Technology, 2014, 16(6): 598-601. DOI: 10.1088/1009-0630/16/6/11

Catalog

    Figures(9)

    Article views (50) PDF downloads (17) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return