Advanced Search+
Xifeng CAO, Guojun XIA, Hui LIU, Juhui CHEN, Daren YU. Influence of neutral gas supply position on wall erosion of Hall thruster studied by particle-in-cell simulation[J]. Plasma Science and Technology, 2023, 25(5): 055507. DOI: 10.1088/2058-6272/acaf25
Citation: Xifeng CAO, Guojun XIA, Hui LIU, Juhui CHEN, Daren YU. Influence of neutral gas supply position on wall erosion of Hall thruster studied by particle-in-cell simulation[J]. Plasma Science and Technology, 2023, 25(5): 055507. DOI: 10.1088/2058-6272/acaf25

Influence of neutral gas supply position on wall erosion of Hall thruster studied by particle-in-cell simulation

More Information
  • Corresponding author:

    Xifeng CAO, E-mail: caoxifeng1991@163.com

  • Received Date: August 19, 2022
  • Revised Date: December 26, 2022
  • Accepted Date: December 27, 2022
  • Available Online: December 05, 2023
  • Published Date: February 20, 2023
  • In this work, we have carried out a simulation study on the discharge process of Hall thrusters under the conditions of different neutral gas radial supply positions based on the particle-in-cell (PIC) and Monte Carlo collision (MCC) methods. This paper compares the two-dimensional (2D) distributions of neutral gas, plasma and wall erosion-related parameters under different neutral gas supply positions. The comparison results show that the change of the neutral gas supply position affects the radial distribution uniformity of the neutral gas and plasma in the channel. From the comparison of the density peaks, it can be found that the neutral gas density and the plasma density peak under the upper gas supply condition are relatively low, and the plasma density peak is 22.49% lower than the density peak under the middle gas supply condition. Meanwhile, as the radial position of the gas supply moves from the lower gas supply to the upper gas supply, the position of the ionization zone also gradually moves toward the anode. The results of erosion-related parameter distribution comparison show that the change of gas supply location has an obvious influence on erosion rate and erosion range. In terms of erosion rate, the wall erosion rate is relatively low under the upper gas supply condition, and the peak erosion rates of the inner and outer walls are 33.3% and 29.9% lower than those under the other two conditions. In terms of erosion range, as the gas supply position moves from the lower gas supply position to the upper gas supply position, the erosion range gradually increases from 5 to 7.5 mm.

  • [1]
    Liu H et al 2022 Acta Astronaut. 193 496 doi: 10.1016/j.actaastro.2022.01.043
    [2]
    Mazouffre S 2016 Plasma Sources Sci. Technol. 25 033002 doi: 10.1088/0963-0252/25/3/033002
    [3]
    Liu H et al 2018 Acta Phys. Sin. 67 145201(in Chinese) doi: 10.7498/aps.67.20180366
    [4]
    Kim H et al 2017 Appl. Phys. Lett. 110 114101 doi: 10.1063/1.4978532
    [5]
    Gao Y Y et al 2022 Acta Astronaut. 196 186 doi: 10.1016/j.actaastro.2022.04.018
    [6]
    Conversano R W et al 2015 IEEE Trans. Plasma Sci. 43 103 doi: 10.1109/TPS.2014.2321107
    [7]
    Mikellides I G et al 2013 Appl. Phys. Lett. 102 023509 doi: 10.1063/1.4776192
    [8]
    Hofer R R et al 2014 J. Appl. Phys. 115 043304 doi: 10.1063/1.4862314
    [9]
    Linnell J A and Gallimore A D 2006 Phys. Plasmas 13 103504 doi: 10.1063/1.2358331
    [10]
    Gabor D 1947 Nature 160 89 doi: 10.1038/160089b0
    [11]
    Morozov A I 2003 Plasma Phys. Rep. 29 235 doi: 10.1134/1.1561119
    [12]
    Goncharov A A, Zatuagan A V and Protsenko I M 1993 IEEE Trans. Plasma Sci. 21 578 doi: 10.1109/27.249646
    [13]
    Goncharov A A et al 1998 Rev. Sci. Instrum. 69 1135 doi: 10.1063/1.1148647
    [14]
    Mazouffre S, Tsikata S and Vaudolon J 2014 J. Appl. Phys. 116 243302 doi: 10.1063/1.4904965
    [15]
    Vaudolon J et al 2015 Appl. Phys. Lett. 107 174103 doi: 10.1063/1.4932196
    [16]
    Ding Y J et al 2016 J. Phys. D: Appl. Phys. 49 465001 doi: 10.1088/0022-3727/49/46/465001
    [17]
    Ding Y J et al 2017 Phys. Plasmas 24 023507 doi: 10.1063/1.4976104
    [18]
    Fan H T et al 2020 Vacuum 174 109193 doi: 10.1016/j.vacuum.2020.109193
    [19]
    Gao Y Y et al 2016 Phys. Plasmas 23 083514 doi: 10.1063/1.4960663
    [20]
    Kim V et al 1998 Investigation of the anode Configuration influence on the PPS-1350 laboratory model plume divergence 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit (Cleveland, USA) (AIAA)
    [21]
    Miyasaka T et al 2003 Influence of propellant-inlet condition on Hall thruster performance 28th Int. Electric Propulsion Conf. (Toulouse, France) (IEPC)
    [22]
    Vial V et al 2003 Xenon gas injection in SPT thrusters 28th Int. Electric Propulsion Conf. (Toulouse, France) (IEPC)
    [23]
    Garrigues L et al 2004 Appl. Phys. Lett. 85 5460 doi: 10.1063/1.1829137
    [24]
    Ma D et al 2022 Vacuum 195 110673 doi: 10.1016/j.vacuum.2021.110673
    [25]
    Liu H et al 2008 Contrib. Plasma Phys. 48 603 doi: 10.1002/ctpp.200810094
    [26]
    Liu H et al 2021 Appl. Sci. 11 6549 doi: 10.3390/app11146549
    [27]
    Liu H et al 2020 Eur. Phys. J. D 74 195 doi: 10.1140/epjd/e2020-100595-0
    [28]
    Yu D R et al 2007 Phys. Plasmas 14 064505 doi: 10.1063/1.2743024
    [29]
    Cao X F et al 2017 Plasma Sci. Technol. 19 105501 doi: 10.1088/2058-6272/aa7940
    [30]
    Mikellides I G et al 2008 J. Propul. Power 24 866 doi: 10.2514/1.33462
    [31]
    Szabo J J 2001 Fully kinetic numerical modeling of a plasma thruster PhD Thesis Massachusetts Institute of Technology
    [32]
    Liu J W et al 2019 Contrib. Plasma Phys. 59 e201800001 doi: 10.1002/ctpp.201800001
    [33]
    Hofer R R and Randolph T M 2013 J. Propul. Power 29 166 doi: 10.2514/1.B34525
    [34]
    Bohdansky J 1984 Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Interact. Mater. Atoms 2 587 doi: 10.1016/0168-583X(84)90271-4
    [35]
    Pencil E J, Randolph T and Manzella D 1996 End-of-life stationary plasma thruster far-field plume characterization 32nd Joint Propulsion Conf. and Exhibit (Lake Buena Vista, USA) (AIAA)
  • Related Articles

    [1]Jun DENG (邓俊), Liming HE (何立明), Xingjian LIU (刘兴建), Yi CHEN (陈一). Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber[J]. Plasma Science and Technology, 2018, 20(12): 125502. DOI: 10.1088/2058-6272/aacdef
    [2]Pedro AFFONSO NOBREGA, Alain GAUNAND, Vandad ROHANI, François CAUNEAU, Laurent FULCHERI. Applying chemical engineering concepts to non-thermal plasma reactors[J]. Plasma Science and Technology, 2018, 20(6): 65512-065512. DOI: 10.1088/2058-6272/aab301
    [3]Yi WU (吴翊), Yufei CUI (崔彧菲), Jiawei DUAN (段嘉炜), Hao SUN (孙昊), Chunlin WANG (王春林), Chunping NIU (纽春萍). Influence of arc current and pressure on non-chemical equilibrium air arc behavior[J]. Plasma Science and Technology, 2018, 20(1): 14021-014021. DOI: 10.1088/2058-6272/aa9325
    [4]Gui LI (李桂), Muyang QIAN (钱沐杨), Sanqiu LIU (刘三秋), Huaying CHEN (陈华英), Chunsheng REN (任春生), Dezhen WANG (王德真). A numerical simulation study on active species production in dense methane-air plasma discharge[J]. Plasma Science and Technology, 2018, 20(1): 14004-014004. DOI: 10.1088/2058-6272/aa8f3c
    [5]N KHADIR, K KHODJA, A BELASRI. Methane conversion using a dielectric barrier discharge reactor at atmospheric pressure for hydrogen production[J]. Plasma Science and Technology, 2017, 19(9): 95502-095502. DOI: 10.1088/2058-6272/aa6d6d
    [6]HE Yuchen (何雨辰), Satoshi UEHARA, Hidemasa TAKANA, Hideya NISHIYAMA. Numerical Modelling and Simulation of Chemical Reactions in a Nano-Pulse Discharged Bubble for Water Treatment[J]. Plasma Science and Technology, 2016, 18(9): 924-932. DOI: 10.1088/1009-0630/18/9/09
    [7]HU Shuanghui (胡爽慧), WANG Baowei (王保伟), LV Yijun (吕一军), YAN Wenjuan (闫文娟). Conversion of Methane to C2 Hydrocarbons and Hydrogen Using a Gliding Arc Reactor[J]. Plasma Science and Technology, 2013, 15(6): 555-561. DOI: 10.1088/1009-0630/15/6/13
    [8]LI Zhihong (李志宏), GUO Bing (郭冰), LI Yunju (李云居), SU Jun (苏俊), LI Ertao (李二涛), BAI Xixiang (白希祥), WANG Youbao (王友宝), ZENG Sheng (曾晟), WANG Baoxiang (王宝祥), YAN Shengquan (颜胜权), LI Zhichang (李志常), et al. Determination of the Astrophysical S(E) Factors or Rates for Radiative Capture Reaction with One Nucleon Transfer Reaction[J]. Plasma Science and Technology, 2012, 14(6): 488-491. DOI: 10.1088/1009-0630/14/6/11
    [9]SUN Yanpeng (孙艳朋), NIE Yong (聂勇), WU Angshan (吴昂山), JI Dengxiang(姬登祥), YU Fengwen (于凤文), JI Jianbing (计建炳. Carbon Dioxide Reforming of Methane to Syngas by Thermal Plasma[J]. Plasma Science and Technology, 2012, 14(3): 252-256. DOI: 10.1088/1009-0630/14/3/12
    [10]WANG Kangjun, LI Xiaosong, ZHU Aimin. A Green Process for High-Concentration Ethylene and Hydrogen Production from Methane in a Plasma-Followed-by-Catalyst Reactor[J]. Plasma Science and Technology, 2011, 13(1): 77-81.

Catalog

    Article views (77) PDF downloads (123) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return