Advanced Search+
Erhao GAO, Keying GUO, Qi JIN, Li HAN, Ning LI, Zuliang WU, Shuiliang YAO. NaCl aqueous solution as a novel electrode in a dielectric barrier discharge reactor for highly efficient ozone generation[J]. Plasma Science and Technology, 2023, 25(7): 075502. DOI: 10.1088/2058-6272/acbef6
Citation: Erhao GAO, Keying GUO, Qi JIN, Li HAN, Ning LI, Zuliang WU, Shuiliang YAO. NaCl aqueous solution as a novel electrode in a dielectric barrier discharge reactor for highly efficient ozone generation[J]. Plasma Science and Technology, 2023, 25(7): 075502. DOI: 10.1088/2058-6272/acbef6

NaCl aqueous solution as a novel electrode in a dielectric barrier discharge reactor for highly efficient ozone generation

More Information
  • Corresponding author:

    Zuliang WU, E-mail: wuzuliang@cczu.edu.cn

    Shuiliang YAO, E-mail: yaos@cczu.edu.cn

  • Received Date: November 22, 2022
  • Revised Date: February 22, 2023
  • Accepted Date: February 23, 2023
  • Available Online: December 05, 2023
  • Published Date: April 04, 2023
  • Ozone (O3) generated by a dielectric barrier discharge (DBD) is widely used in various industrial processes. In this study, NaCl aqueous solution was used as a novel electric power transmission electrode in a DBD reactor (instead of a traditional metal electrode) for highly efficient ozone generation. The results demonstrated that a high O3 yield of 242 g kWh-1 with a concentration of 14.6 g m-3 O3 was achieved. The power transmission mechanism works because NaCl aqueous solution behaves as a capacitor when an alternating pulse voltage below 8 kHz is used. Compared with the resistance of the discharge barrier and discharge space, the resistance of NaCl aqueous solution can be ignored, which ensures that O3 is generated efficiently. It is expected that O3 generation using NaCl aqueous solution as a novel electrode in a DBD reactor could be an alternative technology with good application prospects.

  • This research was supported by National Natural Science Foundation of China (Nos. 12075037 and 22206013), the Natural Science Foundation of Jiangsu Province (No. BK20210857) and the Leading Innovative Talents Cultivation Project of Changzhou City (No. CQ20210083).

  • [1]
    Rekhate C V and Srivastava J K 2020 Chem. Eng. J. Adv. 3 100031 doi: 10.1016/j.ceja.2020.100031
    [2]
    Audran G, Marque S R A and Santelli M 2018 Tetrahedron 74 6221 doi: 10.1016/j.tet.2018.09.023
    [3]
    Tiwari B K et al 2010 J. Cereal Sci. 51 248 doi: 10.1016/j.jcs.2010.01.007
    [4]
    Pandiselvam R et al 2020 Trends Food Sci. Technol. 97 38 doi: 10.1016/j.tifs.2019.12.017
    [5]
    Zeng J R and Lu J Y 2018 Int. Immunopharmacol. 56 235 doi: 10.1016/j.intimp.2018.01.040
    [6]
    Cattel F et al 2021 Virus Res. 291 198207 doi: 10.1016/j.virusres.2020.198207
    [7]
    Wang J L and Chen H 2020 Sci. Total Environ. 704 135249 doi: 10.1016/j.scitotenv.2019.135249
    [8]
    Fridman A 2008 Plasma Chemistry (Cambridge: Cambridge University Press)
    [9]
    Yao S L et al 2015 J. Electrost. 75 35 doi: 10.1016/j.elstat.2015.03.001
    [10]
    Zhang Y F et al 2018 Plasma Chem. Plasma Process. 38 1199 doi: 10.1007/s11090-018-9922-2
    [11]
    Homola T et al 2019 Plasma Chem. Plasma Process. 39 1227 doi: 10.1007/s11090-019-09993-6
    [12]
    Li M et al 2018 Vacuum 157 249 doi: 10.1016/j.vacuum.2018.08.058
    [13]
    Brough D and Jouhara H 2020 Int. J. Thermofluids 1-2 100007 doi: 10.1016/j.ijft.2019.100007
    [14]
    Correa A J et al 2021 Resour. Policy 71 102003 doi: 10.1016/j.resourpol.2021.102003
    [15]
    Peng T D et al 2019 Energy Procedia 158 3937 doi: 10.1016/j.egypro.2019.01.849
    [16]
    [17]
    Dong D et al 2020 J. Cleaner Prod. 11 122825 doi: 10.1016/j.jclepro.2020.122825
    [18]
    [19]
    [20]
    [21]
    Zhang Q et al 2017 J. Cleaner Prod. 162 665 doi: 10.1016/j.jclepro.2017.06.042
    [22]
    [23]
    Perera L and Berkowitz M L 1991 J. Chem. Phys. 95 1954 doi: 10.1063/1.460992
    [24]
    Hamanm C H 2007 Electrochemistry (Weinheim: Chemical Industry Press) 665
    [25]
    Schmidt-Szalowski K and Borucka A 1989 Plasma Chem. Plasma Process. 9 235 doi: 10.1007/BF01054284
    [26]
    Schmidt-Szałowski K, Borucka A and Jodzis S 1990 Plasma Chem. Plasma Process. 10 443 doi: 10.1007/BF01447202
    [27]
    Chen H L, Lee H M and Chang M B 2006 Ozone: Sci. Eng. 28 111 doi: 10.1080/01919510600559393
    [28]
    Nomoto Y et al 1995 IEEE Trans. Ind. Appl. 31 1458 doi: 10.1109/28.475741
    [29]
    Chang M B and Wu S J 1997 Ozone: Sci. Eng. 19 241 doi: 10.1080/01919519708547304
    [30]
    Jodzis S 2012 Ozone: Sci. Eng. 34 378 doi: 10.1080/01919512.2012.713285
    [31]
    Garamoon A A et al 2002 Plasma Sources Sci. Technol. 11 254 doi: 10.1088/0963-0252/11/3/305
    [32]
    Murphy A B and Morrow R 2002 IEEE Trans. Plasma Sci. 30 180 doi: 10.1109/TPS.2002.1003983
    [33]
    Samaranayake W J M et al 2000 IEEE Trans. Dielectr. Electr. Insul. 7 849 doi: 10.1109/94.891999
    [34]
    Yuan D K et al 2016 J. Phys. D: Appl. Phys. 49 455203 doi: 10.1088/0022-3727/49/45/455203
    [35]
    Yuan D K et al 2017 Plasma Chem. Plasma Process. 37 1165 doi: 10.1007/s11090-017-9793-y
    [36]
    Homola T et al 2020 Plasma Sources Sci. Technol. 29 095014 doi: 10.1088/1361-6595/aba987
    [37]
    Kogelschatz U, Eliasson B and Egli W 1997 J. Phys. Ⅳ France 7 C4–47 doi: 10.1051/jp4:1997405
  • Related Articles

    [1]Doo-Hee CHANG, Seung Ho JEONG, Min PARK, Tae-Seong KIM, Bong-Ki JUNG, Kwang Won LEE, Sang Ryul IN. Discharge Characteristics of Large-Area High-Power RF Ion Source for Positive and Negative Neutral Beam Injectors[J]. Plasma Science and Technology, 2016, 18(12): 1220-1225. DOI: 10.1088/1009-0630/18/12/13
    [2]WEI Zian (卫子安), MA Jinxiu (马锦秀), LI Yuanrui (李元瑞), SUN Yan (孙彦), JIANG Zhengqi (江正琦). Control of Beam Energy and Flux Ratio in an Ion-Beam-Background Plasma System Produced in a Double Plasma Device[J]. Plasma Science and Technology, 2016, 18(11): 1076-1080. DOI: 10.1088/1009-0630/18/11/04
    [3]LIAN Youyun (练友运), LIU Xiang (刘翔), FENG Fan (封范), CHEN Lei (陈蕾), CHENG Zhengkui (程正奎), WANG Jin (王金), CHEN Jiming (谌继明). Manufacturing and High Heat Flux Testing of Brazed Flat-Type W/CuCrZr Plasma Facing Components[J]. Plasma Science and Technology, 2016, 18(2): 184-189. DOI: 10.1088/1009-0630/18/2/15
    [4]T. S. HAHM. Ion Heating from Nonlinear Landau Damping of High Mode Number Toroidal Alfvén Eigenmodes[J]. Plasma Science and Technology, 2015, 17(7): 534-538. DOI: 10.1088/1009-0630/17/7/02
    [5]WANG Qing(王庆), BA Dechun(巴德纯), MING Yue(明悦), XU Lin(徐林), GUO Deyu(郭德宇). Low Temperature Nitriding of 304 Austenitic Stainless Steel Using RF-ICP Method: the Role of Ion Beam Flux Density[J]. Plasma Science and Technology, 2014, 16(10): 960-963. DOI: 10.1088/1009-0630/16/10/10
    [6]XIE Yahong(谢亚红), HU Chundong(胡纯栋), LIU Sheng(刘胜), JIANG Caichao(蒋才超), LIANG Lizhen(梁立振), LI Jun(李军), XIE Yuanlai(谢远来), LIU Zhimin(刘智民). The Arc Regulation Characteristics of the High-Current Ion Source for the EAST Neutral Beam Injector[J]. Plasma Science and Technology, 2014, 16(4): 429-432. DOI: 10.1088/1009-0630/16/4/24
    [7]CHEN Lei(陈蕾), LIAN Youyun(练友运), LIU Xiang(刘翔). Behavior of Brazed W/Cu Mockup Under High Heat Flux Loads[J]. Plasma Science and Technology, 2014, 16(3): 278-282. DOI: 10.1088/1009-0630/16/3/19
    [8]WANG Fumin (王福敏), GAN Kaifu (甘开福), GONG Xianzu (龚先祖), EAST team. Temperature Distribution and Heat Flux on the EAST Divertor Targets in H-Mode[J]. Plasma Science and Technology, 2013, 15(3): 225-229. DOI: 10.1088/1009-0630/15/3/07
    [9]HU Chundong(胡纯栋), XIE Yahong(谢亚红), NBI team. The Development of a Megawatt-Level High Current Ion Source[J]. Plasma Science and Technology, 2012, 14(1): 75-77. DOI: 10.1088/1009-0630/14/1/16
    [10]ZHU Xueguang(朱学光). Influence of the Phase of the Antenna Current Standing Wave on the Power Flux in Ion Cyclotron Heating[J]. Plasma Science and Technology, 2010, 12(5): 543-546.

Catalog

    Figures(8)  /  Tables(1)

    Article views (52) PDF downloads (111) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return