Citation: | Chengshuo HUANG, Xiangqian XIE, Yangyang ZHOU, Xi ZHU, Xinglei CUI, Zhi FANG. Wet flashover voltage improvement of the ceramics with dielectric barrier discharge[J]. Plasma Science and Technology, 2023, 25(11): 114003. DOI: 10.1088/2058-6272/acd83b |
Surface modification techniques with plasma are widely investigated to improve the surface insulation capability of polymers under dry conditions, while the relationship between treatment method, surface physical and chemical properties, and wet flashover voltage is still unclear for inorganic ceramics. In this work, the surface insulation properties of ceramics under wet conditions are improved using nanosecond-pulsed dielectric barrier discharge with polydimethylsiloxane (PDMS) as the precursor. The relationships between PDMS concentration and the water contact angle, dry and wet flashover voltages are obtained to acquire the optimal concentration. The surface charge dissipation test and surface physio-chemical property measurement with SEM, AFM, XPS are carried out to further explore the mechanism of surface insulation enhancement. The results show that film deposition with micron thickness and superhydrophobicity occurs at the PDMS concentration of 1.5%. The dry flashover voltage is increased by 14.6% due to the induction of deep traps, while the wet flashover voltage is increased by 66.7%. The gap between dry-wet flashover voltage is decreased by 62.3% compared with the untreated one due to the self-cleaning effect.
This work was partially supported by National Natural Science Foundation of China (Nos. 51977104, 52037004 and 52207160) and the Natural Science Foundation of Jiangsu Province (No. BK20220341).
[1] |
Wang Y L et al 2021 IEEE T. Power. Electr. 36 10 doi: 10.1109/tpel.2021.3072655
|
[2] |
Sato M et al 2016 IEEE T. Dielect. El. In. 23 1 doi: 10.1109/tdei.2015.005412
|
[3] |
Wassermann T N et al 2019 Microelectron. Reliab. 100–101 113468 doi: 10.1016/j.microrel.2019.113468
|
[4] |
Chen X R et al 2020 IEEE Trans. Dielectr. Electr. Insul. 27 504 doi: 10.1109/tdei.2019.008598
|
[5] |
Xu W J et al 2021 IEEE Trans. Dielectr. Electr. Insul. 28 310 doi: 10.1109/tdei.2020.009101
|
[6] |
Yan J Y et al 2021 Plasma Sci. Technol. 23 115501 doi: 10.1088/2058-6272/ac15ee
|
[7] |
Xie Q et al 2018 Plasma Sci. Technol. 20 025504 doi: 10.1088/2058-6272/aa97d0
|
[8] |
Shao T et al 2015 IEEE Trans. Dielectr. Electr. Insul. 22 1747 doi: 10.1109/tdei.2015.7116373
|
[9] |
Wu J C et al 2021 Plasma Sci. Technol. 24 085504 doi: 10.1088/2058-6272/ac0109
|
[10] |
Li C Y et al 2016 J. Phys. D: Appl. Phys. 49 445304 doi: 10.1088/0022-3727/49/44/445304
|
[11] |
Shi P et al 2016 Plasma Sci. Technol. 18 337 doi: 10.1088/1009-0630/18/4/01
|
[12] |
Shao T et al 2014 Appl. Phys. Lett. 105 071607 doi: 10.1063/1.4893884
|
[13] |
Wang R X et al 2017 J. Appl. Phys. 122 233302 doi: 10.1063/1.5008645
|
[14] |
Wang R X et al 2015 Appl. Surf. Sci. 328 509 doi: 10.1016/j.apsusc.2014.12.076
|
[15] |
Fang Z et al 2013 IEEE T. Plasma Sci. 41 1627 doi: 10.1109/tps.2013.2259508
|
[16] |
Cui X L et al 2022 Appl. Surf. Sci. 597 153640 doi: 10.1016/j.apsusc.2022.153640
|
[17] |
Liu Z Y et al 2022 High Voltage 7 771 doi: 10.1049/hve2.12194
|
[18] |
Jiang W H et al 2014 IEEE T. Plasma Sci. 42 3603 doi: 10.1109/tps.2014.2358627
|
[19] |
Tang X M et al 2022 Rev. Sci. Instrum. 93 084707 doi: 10.1063/5.0089020
|
[20] |
Zhao Z et al 2022 Plasma Sources Sci. Technol. 31 045005 doi: 10.1088/1361-6595/ac6050
|
[21] |
Li Y T et al 2021 Green Chem. 23 4181 doi: 10.1039/D1GC00836F
|
[22] |
Li J Y et al 2015 IEEE Trans. Dielectr. Electr. Insul. 22 1723 doi: 10.1109/tdei.2015.7116370
|
[23] |
Shen W W et al 2013 J. Appl. Phys. 113 083706 doi: 10.1063/1.4792491
|
[24] |
Zhang C et al 2017 J. Phys. D: Appl. Phys. 50 405203 doi: 10.1088/1361-6463/aa829b
|
[25] |
Vij V et al 2022 Polym. Compos. 43 7315 doi: 10.1002/pc.26797
|
[26] |
Sato Y et al 2007 IEEE J. Sel. Top. Quant. 13 3 doi: 10.1109/jstqe.2007.896564
|
[27] |
Bechteler C et al 2020 J. Eur. Ceram. Soc. 40 4232 doi: 10.1016/j.jeurceramsoc.2020.04.044
|
[28] |
Wang C N et al 2009 J. Alloy. Compd. 474 180 doi: 10.1016/j.jallcom.2008.06.042
|
[29] |
Yi R X et al 2021 Int. J. Adv. Manuf. Tech. 113 1799 doi: 10.1007/s00170-021-06685-4
|
[30] |
Cui X L et al 2022 Surf. Coat. Tech. 451 129066 doi: 10.1016/j.surfcoat.2022.129066
|
[31] |
Morent R et al 2009 Surf. Coat. Tech. 203 1366 doi: 10.1016/j.surfcoat.2008.11.008
|
[32] |
Grierson D S et al 2005 J. Adhes. Sci. Technol. 19 291 doi: 10.1163/1568561054352685
|
[33] |
Lazouskaya V et al 2013 J. Colloid Interface Sci. 406 44 doi: 10.1016/j.jcis.2013.05.078
|
[34] |
Yu M et al 2014 Langmuir 30 13615 doi: 10.1021/la5041272
|
[35] |
Masood M T et al 2017 Chem. Eng. J. 322 10 doi: 10.1016/j.cej.2017.04.007
|
[36] |
Chen J Y et al 2021 Colloid. Surface. A. 630 127552 doi: 10.1016/j.colsurfa.2021.127552
|
[1] | Feiyue MAO, Nengchao WANG, Zhuo HUANG, Zhengkang REN, Song ZHOU, Chengshuo SHEN, Xiaoyi ZHANG, Ying HE, Qi ZHANG, Ruo JIA, Chuanxu ZHAO, Yangbo LI, Bo HU, Da LI, Abba Alhaji BALA, Zhipeng CHEN, Zhongyong CHEN, Zhoujun YANG, Yunfeng LIANG, Yonghua DING, Yuan PAN, J-TEXT Team. Study of the spectrum effect on the threshold of resonant magnetic perturbation penetration on J-TEXT[J]. Plasma Science and Technology, 2022, 24(12): 124002. DOI: 10.1088/2058-6272/ac9f2e |
[2] | Hongmei DU (杜洪梅), Liping ZHANG (张丽萍), Dongao LI (李东澳). THz plasma wave instability in field effect transistor with electron diffusion current density[J]. Plasma Science and Technology, 2018, 20(11): 115001. DOI: 10.1088/2058-6272/aacaef |
[3] | Alexander LYSENKO, Iurii VOLK. Influence of two-stream relativistic electron beam parameters on the space-charge wave with broad frequency spectrum formation[J]. Plasma Science and Technology, 2018, 20(3): 35002-035002. DOI: 10.1088/2058-6272/aaa358 |
[4] | Suyun ZHOU (周素云), Hui CHEN (陈辉), Yanfang LI (李艳芳). Breaking of a Langmuir wave in cold electron–positron–ion plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14008-014008. DOI: 10.1088/2058-6272/aa8cc0 |
[5] | Monzurul K AHMED, Om P SAH. Solitary kinetic Alfvén waves in a dense electron–positron–ion plasma with degenerate electrons and positrons[J]. Plasma Science and Technology, 2017, 19(12): 125302. DOI: 10.1088/2058-6272/aa8765 |
[6] | Neda SHAMSIAN, Babak SHIRANI BIDABADI, Hosein PIRJAMADI. Development of a radiographic method for measuring the discrete spectrum of the electron beam from a plasma focus device[J]. Plasma Science and Technology, 2017, 19(7): 75101-075101. DOI: 10.1088/2058-6272/aa632e |
[7] | LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), SHI Lei (石磊), LIU Donglin (刘东林). Influences of Turbulent Reentry Plasma Sheath on Wave Scattering and Propagation[J]. Plasma Science and Technology, 2016, 18(6): 617-626. DOI: 10.1088/1009-0630/18/6/07 |
[8] | ZHU Zhenni(朱珍妮), WU Zhengwei(吴征威), LI Chunhua(李春华), YANG Weihong(杨维纮). Electron Acoustic Solitary Waves in Magnetized Quantum Plasma with Relativistic Degenerated Electrons[J]. Plasma Science and Technology, 2014, 16(11): 995-999. DOI: 10.1088/1009-0630/16/11/01 |
[9] | GAO Min (高敏), CHEN Shaoyong (陈少永), TANG Changjian (唐昌建). Electron Cyclotron Harmonic Wave Heating in Tokamak Plasmas with Different Polarization Modes[J]. Plasma Science and Technology, 2013, 15(4): 313-317. DOI: 10.1088/1009-0630/15/4/02 |
[10] | LI Chunzao(李春早), LIU Shaobin(刘少斌), BIAN Borui(卞博锐), DAI Zhaoyang(戴钊阳), ZHANG Xueyong(张学勇). Theoretical Analysis on Propagation of Electromagnetic Wave in Preformed Narrow Plasma Channel[J]. Plasma Science and Technology, 2012, 14(8): 702-707. DOI: 10.1088/1009-0630/14/8/04 |
1. | Osca Engelbrecht, M., Ridgers, C.P., Dedrick, J. et al. Particle-in-cell simulations of high frequency capacitively coupled plasmas including spatially localised inductive-like heating. Plasma Sources Science and Technology, 2023, 32(12): 125003. DOI:10.1088/1361-6595/ad0fb1 |
2. | Eremin, D., Kemaneci, E., Matsukuma, M. et al. Modeling of very high frequency large-electrode capacitively coupled plasmas with a fully electromagnetic particle-in-cell code. Plasma Sources Science and Technology, 2023, 32(4): 044007. DOI:10.1088/1361-6595/accecb |
3. | Sun, G., Zhang, S., Sun, A. et al. On the electron sheath theory and its applications in plasma-surface interactions. Plasma Science and Technology, 2022, 24(9): 095401. DOI:10.1088/2058-6272/ac6aa7 |
4. | Xing, Y., Qiao, N., Yu, J. et al. Spectroscopic depth profilometry of organic thin films upon inductively coupled plasma etching. Review of Scientific Instruments, 2022, 93(7): 073903. DOI:10.1063/5.0088718 |
5. | Vass, M., Wilczek, S., Derzsi, A. et al. Evolution of the bulk electric field in capacitively coupled argon plasmas at intermediate pressures. Plasma Sources Science and Technology, 2022, 31(4): 045017. DOI:10.1088/1361-6595/ac6361 |
6. | Su, Z.-X., Shi, D.-H., Liu, Y.-X. et al. Radially-dependent ignition process of a pulsed capacitively coupled RF argon plasma over 300 mm-diameter electrodes: Multi-fold experimental diagnostics. Plasma Sources Science and Technology, 2021, 30(12): 125013. DOI:10.1088/1361-6595/ac3e3f |
7. | Zhao, K., Guo, Y.-Q., Zhang, Q.-Z. et al. Experimental Investigation of Nonlinear Standing Waves in DC/VHF Hybrid Capacitive Discharges. IEEE Transactions on Plasma Science, 2021, 49(11): 3392-3397. DOI:10.1109/TPS.2021.3120596 |