Advanced Search+
Zhuo HUANG, Song ZHOU, Jinrong FAN, Da LI, Bo RAO, Nengchao WANG, Yonghua DING, Feiyue MAO, Mingxiang HUANG, Wei TIAN, Zhongyong CHEN, Zhipeng CHEN, Yunfeng LIANG, the J-TEXT Team. Design of new resonant magnetic perturbation coils on the J-TEXT tokamak[J]. Plasma Science and Technology, 2023, 25(11): 115601. DOI: 10.1088/2058-6272/acd997
Citation: Zhuo HUANG, Song ZHOU, Jinrong FAN, Da LI, Bo RAO, Nengchao WANG, Yonghua DING, Feiyue MAO, Mingxiang HUANG, Wei TIAN, Zhongyong CHEN, Zhipeng CHEN, Yunfeng LIANG, the J-TEXT Team. Design of new resonant magnetic perturbation coils on the J-TEXT tokamak[J]. Plasma Science and Technology, 2023, 25(11): 115601. DOI: 10.1088/2058-6272/acd997

Design of new resonant magnetic perturbation coils on the J-TEXT tokamak

More Information
  • Corresponding author:

    Song ZHOU, E-mail: szhou@hust.edu.cn

  • 4 See Wang N et al 2022 (https://doi.org/10.1088/1741-4326/ac3aff) for the J-TEXT Team.

  • Received Date: August 31, 2022
  • Revised Date: May 24, 2023
  • Accepted Date: May 25, 2023
  • Available Online: December 05, 2023
  • Published Date: July 06, 2023
  • The resonant magnetic perturbation (RMP) system is a powerful auxiliary system on tokamaks. On the J-TEXT tokamak, a set of new in-vessel coils is designed to enhance the amplitude of the RMP. The new coils are designed to be two-turn saddle coils. These two-turn saddle coils have been optimized in terms of their structure, support, and protection components to overcome the limitations of the narrow in-vessel space, resulting in a compact coil module that can be accommodated in the vessel. To verify the feasibility of this design, an electromagnetic simulation is performed to investigate the electrical parameters and the generated field of the coils. A multi-field coupled simulation is performed to investigate the capacity of heat dissipation. As a result of these efforts, the new RMP coils have been successfully installed on the J-TEXT tokamak. It has significantly enhanced the RMP amplitude and been widely applied in experiments.

  • This work is supported by Hubei Provincial Natural Science Foundation of China (No. BZQ22006), Fundamental Research Funds for the Central Universities (No. CZY20028), National Magnetic Confinement Fusion Energy R&D Program of China (No. 2018YFE0309102), and National Natural Science Foundation of China (No. 51821005).

  • [1]
    Hender T C et al 1992 Nucl. Fusion 32 2091 doi: 10.1088/0029-5515/32/12/I02
    [2]
    Strait E J et al 2019 Nucl. Fusion 59 112012 doi: 10.1088/1741-4326/ab15de
    [3]
    Evans T E et al 2004 Phys. Rev. Lett. 92 235003 doi: 10.1103/PhysRevLett.92.235003
    [4]
    Liang Y et al 2007 Phys. Rev. Lett. 98 265004 doi: 10.1103/PhysRevLett.98.265004
    [5]
    Park J K et al 2008 Nucl. Fusion 48 045006 doi: 10.1088/0029-5515/48/4/045006
    [6]
    Evans T E et al 2008 Nucl. Fusion 48 024002 doi: 10.1088/0029-5515/48/2/024002
    [7]
    Park J K et al 2018 Nat. Phys. 14 1223 doi: 10.1038/s41567-018-0268-8
    [8]
    Liang Y et al 2005 Phys. Rev. Lett. 94 105003 doi: 10.1103/PhysRevLett.94.105003
    [9]
    Hu Q M et al 2014 Nucl. Fusion 54 064013 doi: 10.1088/0029-5515/54/6/064013
    [10]
    Buttery R J et al 2000 Nucl. Fusion 40 807 doi: 10.1088/0029-5515/40/4/306
    [11]
    Chitarin G et al 2003 Fusion Eng. Des. 66–68 1055 doi: 10.1016/S0920-3796(03)00273-4
    [12]
    Giesen B et al 1997 Fusion Eng. Des. 37 341 doi: 10.1016/S0920-3796(97)00075-6
    [13]
    Rao B et al 2012 IEEE Trans. Appl. Supercond. 22 4201804 doi: 10.1109/TASC.2011.2181935
    [14]
    Wang N C et al 2022 Nucl. Fusion 62 042016 doi: 10.1088/1741-4326/ac3aff
    [15]
    Zhuang G et al 2011 Nucl. Fusion 51 094020 doi: 10.1088/0029-5515/51/9/094020
    [16]
    Rao B et al 2014 Fusion Eng. Des. 89 378 doi: 10.1016/j.fusengdes.2014.03.038
    [17]
    Guo D J et al 2017 AIP Adv. 7 105002 doi: 10.1063/1.4993480
    [18]
    Hao C D et al 2012 Plasma Sci. Technol. 14 83 doi: 10.1088/1009-0630/14/1/18
    [19]
    Yi B et al 2015 IEEE Trans. Plasma Sci. 43 594 doi: 10.1109/TPS.2014.2387851
    [20]
    Wang N C et al 2014 Nucl. Fusion 54 064014 doi: 10.1088/0029-5515/54/6/064014
    [21]
    Liang Y et al 2019 Nucl. Fusion 59 112016 doi: 10.1088/1741-4326/ab1a72
    [22]
    Huang Z et al 2020 Nucl. Fusion 60 064003 doi: 10.1088/1741-4326/ab8859
    [23]
    Mao F Y et al 2022 Plasma Sci. Technol. 24 124002 doi: 10.1088/2058-6272/ac9f2e
  • Related Articles

    [1]Feiyue MAO, Nengchao WANG, Zhuo HUANG, Zhengkang REN, Song ZHOU, Chengshuo SHEN, Xiaoyi ZHANG, Ying HE, Qi ZHANG, Ruo JIA, Chuanxu ZHAO, Yangbo LI, Bo HU, Da LI, Abba Alhaji BALA, Zhipeng CHEN, Zhongyong CHEN, Zhoujun YANG, Yunfeng LIANG, Yonghua DING, Yuan PAN, J-TEXT Team. Study of the spectrum effect on the threshold of resonant magnetic perturbation penetration on J-TEXT[J]. Plasma Science and Technology, 2022, 24(12): 124002. DOI: 10.1088/2058-6272/ac9f2e
    [2]Hongmei DU (杜洪梅), Liping ZHANG (张丽萍), Dongao LI (李东澳). THz plasma wave instability in field effect transistor with electron diffusion current density[J]. Plasma Science and Technology, 2018, 20(11): 115001. DOI: 10.1088/2058-6272/aacaef
    [3]Alexander LYSENKO, Iurii VOLK. Influence of two-stream relativistic electron beam parameters on the space-charge wave with broad frequency spectrum formation[J]. Plasma Science and Technology, 2018, 20(3): 35002-035002. DOI: 10.1088/2058-6272/aaa358
    [4]Suyun ZHOU (周素云), Hui CHEN (陈辉), Yanfang LI (李艳芳). Breaking of a Langmuir wave in cold electron–positron–ion plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14008-014008. DOI: 10.1088/2058-6272/aa8cc0
    [5]Monzurul K AHMED, Om P SAH. Solitary kinetic Alfvén waves in a dense electron–positron–ion plasma with degenerate electrons and positrons[J]. Plasma Science and Technology, 2017, 19(12): 125302. DOI: 10.1088/2058-6272/aa8765
    [6]Neda SHAMSIAN, Babak SHIRANI BIDABADI, Hosein PIRJAMADI. Development of a radiographic method for measuring the discrete spectrum of the electron beam from a plasma focus device[J]. Plasma Science and Technology, 2017, 19(7): 75101-075101. DOI: 10.1088/2058-6272/aa632e
    [7]LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), SHI Lei (石磊), LIU Donglin (刘东林). Influences of Turbulent Reentry Plasma Sheath on Wave Scattering and Propagation[J]. Plasma Science and Technology, 2016, 18(6): 617-626. DOI: 10.1088/1009-0630/18/6/07
    [8]ZHU Zhenni(朱珍妮), WU Zhengwei(吴征威), LI Chunhua(李春华), YANG Weihong(杨维纮). Electron Acoustic Solitary Waves in Magnetized Quantum Plasma with Relativistic Degenerated Electrons[J]. Plasma Science and Technology, 2014, 16(11): 995-999. DOI: 10.1088/1009-0630/16/11/01
    [9]GAO Min (高敏), CHEN Shaoyong (陈少永), TANG Changjian (唐昌建). Electron Cyclotron Harmonic Wave Heating in Tokamak Plasmas with Different Polarization Modes[J]. Plasma Science and Technology, 2013, 15(4): 313-317. DOI: 10.1088/1009-0630/15/4/02
    [10]LI Chunzao(李春早), LIU Shaobin(刘少斌), BIAN Borui(卞博锐), DAI Zhaoyang(戴钊阳), ZHANG Xueyong(张学勇). Theoretical Analysis on Propagation of Electromagnetic Wave in Preformed Narrow Plasma Channel[J]. Plasma Science and Technology, 2012, 14(8): 702-707. DOI: 10.1088/1009-0630/14/8/04
  • Cited by

    Periodical cited type(7)

    1. Osca Engelbrecht, M., Ridgers, C.P., Dedrick, J. et al. Particle-in-cell simulations of high frequency capacitively coupled plasmas including spatially localised inductive-like heating. Plasma Sources Science and Technology, 2023, 32(12): 125003. DOI:10.1088/1361-6595/ad0fb1
    2. Eremin, D., Kemaneci, E., Matsukuma, M. et al. Modeling of very high frequency large-electrode capacitively coupled plasmas with a fully electromagnetic particle-in-cell code. Plasma Sources Science and Technology, 2023, 32(4): 044007. DOI:10.1088/1361-6595/accecb
    3. Sun, G., Zhang, S., Sun, A. et al. On the electron sheath theory and its applications in plasma-surface interactions. Plasma Science and Technology, 2022, 24(9): 095401. DOI:10.1088/2058-6272/ac6aa7
    4. Xing, Y., Qiao, N., Yu, J. et al. Spectroscopic depth profilometry of organic thin films upon inductively coupled plasma etching. Review of Scientific Instruments, 2022, 93(7): 073903. DOI:10.1063/5.0088718
    5. Vass, M., Wilczek, S., Derzsi, A. et al. Evolution of the bulk electric field in capacitively coupled argon plasmas at intermediate pressures. Plasma Sources Science and Technology, 2022, 31(4): 045017. DOI:10.1088/1361-6595/ac6361
    6. Su, Z.-X., Shi, D.-H., Liu, Y.-X. et al. Radially-dependent ignition process of a pulsed capacitively coupled RF argon plasma over 300 mm-diameter electrodes: Multi-fold experimental diagnostics. Plasma Sources Science and Technology, 2021, 30(12): 125013. DOI:10.1088/1361-6595/ac3e3f
    7. Zhao, K., Guo, Y.-Q., Zhang, Q.-Z. et al. Experimental Investigation of Nonlinear Standing Waves in DC/VHF Hybrid Capacitive Discharges. IEEE Transactions on Plasma Science, 2021, 49(11): 3392-3397. DOI:10.1109/TPS.2021.3120596

    Other cited types(0)

Catalog

    Figures(13)

    Article views (42) PDF downloads (17) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return