Advanced Search+
Konstantinos GIOTIS, Panagiotis SVARNAS, Eleftherios AMANATIDES, Kristaq GAZELI, Guillaume LOMBARDI, Polykarpos K PAPADOPOULOS. Ionization wave propagation and cathode sheath formation due to surface dielectric-barrier discharge sustained in pulsed mode[J]. Plasma Science and Technology, 2023, 25(11): 115402. DOI: 10.1088/2058-6272/acdb52
Citation: Konstantinos GIOTIS, Panagiotis SVARNAS, Eleftherios AMANATIDES, Kristaq GAZELI, Guillaume LOMBARDI, Polykarpos K PAPADOPOULOS. Ionization wave propagation and cathode sheath formation due to surface dielectric-barrier discharge sustained in pulsed mode[J]. Plasma Science and Technology, 2023, 25(11): 115402. DOI: 10.1088/2058-6272/acdb52

Ionization wave propagation and cathode sheath formation due to surface dielectric-barrier discharge sustained in pulsed mode

More Information
  • Corresponding author:

    Panagiotis SVARNAS, E-mail: svarnas@ece.upatras.gr

  • Received Date: March 31, 2023
  • Revised Date: May 30, 2023
  • Accepted Date: June 02, 2023
  • Available Online: December 05, 2023
  • Published Date: July 06, 2023
  • This work deals with the experimental study of a surface dielectric-barrier discharge, as a part of the ongoing interest in the control of plasma induced electro-fluid dynamic effects (e.g. plasma actuators). The discharge is generated using a plasma reactor consisting of a fused silica plate which is sandwiched between two printed circuit boards where the electrodes are developed. The reactor is driven by narrow high voltage square pulses of asymmetric rising (25 ns) and falling (2.5 μs) parts, while the discharge evolution is considered in a temporarily and spatially resolved manner over these pulses. That is, conventional electrical and optical emission analyzes are combined with high resolution optical emission spectroscopy and ns-resolved imaging, unveiling main characteristics of the discharge with a special focus on its propagation along the dielectric-barrier surface. The voltage rising part leads to cathode-directed ionization waves, which propagate with a speed up to 105 m s−1. The voltage falling part leads to cathode sheath formation on the driven electrode. The polarization of the dielectric barrier appears critical for the discharge dynamics.

  • The authors express their gratitude to Mr. Konstantinos Petrou (University of Patras, Department of Electrical and Computer Engineering) for his valuable technical support (PCB fabrication).

    Data availability statement

    The data that support the findings of this study are available from the corresponding author upon reasonable request.

  • [1]
    Fridman A and Kennedy L A 2004 Plasma Physics and Engineering (New York: Taylor & Francis) (https://doi.org/10.1201/9781482293630)
    [2]
    Svarnas P et al 2020 Sci. Total Environ. 705 135940 doi: 10.1016/j.scitotenv.2019.135940
    [3]
    Brandenburg R 2017 Plasma Sources Sci. Technol. 26 053001 doi: 10.1088/1361-6595/aa6426
    [4]
    Gibalov V I and Pietsch G J 2012 Plasma Sources Sci. Technol. 21 024010 doi: 10.1088/0963-0252/21/2/024010
    [5]
    Gibalov V I and Pietsch G J 2000 J. Phys. D: Appl. Phys. 33 2618 doi: 10.1088/0022-3727/33/20/315
    [6]
    Lietz A M et al 2019 Plasma Sources Sci. Technol. 28 125009 doi: 10.1088/1361-6595/ab4ab0
    [7]
    Yatom S et al 2017 J. Phys. D: Appl. Phys. 50 415204 doi: 10.1088/1361-6463/aa879c
    [8]
    Athanasopoulos D K et al 2023 Phys. Scr. 98 055609 doi: 10.1088/1402-4896/acc906
    [9]
    Gazeli K et al 2018 Plasma 1 23 doi: 10.3390/plasma1010003
    [10]
    Lietz A M et al 2020 J. Appl. Phys. 128 083301 doi: 10.1063/5.0020264
    [11]
    Svarnas P et al 2015 Plasma Process. Polym. 12 655 doi: 10.1002/ppap.201400218
    [12]
    Engeling K W et al 2018 Plasma Sources Sci. Technol. 27 085002 doi: 10.1088/1361-6595/aad2c5
    [13]
    Mujahid Z U I et al 2020 Chem. Eng. J. 382 123038 doi: 10.1016/j.cej.2019.123038
    [14]
    Wang W Z et al 2018 Chem. Eng. J. 334 2467 doi: 10.1016/j.cej.2017.11.139
    [15]
    Akishev Y et al 2021 Plasma Sources Sci. Technol. 30 025008 doi: 10.1088/1361-6595/abdaa0
    [16]
    Wang Y G et al 2022 Plasma Sources Sci. Technol. 31 105015 doi: 10.1088/1361-6595/ac9751
    [17]
    Weltmann K D et al 2010 Pure Appl. Chem. 82 1223 doi: 10.1351/PAC-CON-09-10-35
    [18]
    Matthes R et al 2013 PLoS One 8 e70462 doi: 10.1371/journal.pone.0070462
    [19]
    Guo L et al 2019 J. Phys. D: Appl. Phys. 52 425202 doi: 10.1088/1361-6463/ab32c9
    [20]
    Kim Y W et al 2021 J. Power Electron. 21 1878 doi: 10.1007/s43236-021-00321-w
    [21]
    Doležalová E et al 2020 J. Phys. D: Appl. Phys. 53 245203 doi: 10.1088/1361-6463/ab7cf7
    [22]
    Dahle S et al 2021 Cellulose 28 8055 doi: 10.1007/s10570-021-04014-2
    [23]
    Homola T et al 2013 Plasma Chem. Plasma Process. 33 881 doi: 10.1007/s11090-013-9467-3
    [24]
    Prysiazhnyi V and Cernak M 2012 Thin Solid Films 520 6561 doi: 10.1016/j.tsf.2012.06.069
    [25]
    Moreau E 2007 J. Phys. D: Appl. Phys. 40 605 doi: 10.1088/0022-3727/40/3/S01
    [26]
    Corke T C, Enloe C L and Wilkinson S P 2010 Annu. Rev. Fluid Mech. 42 505 doi: 10.1146/annurev-fluid-121108-145550
    [27]
    Kriegseis J, Simon B and Grundmann S 2016 Appl. Mech. Rev. 68 020802 doi: 10.1115/1.4033570
    [28]
    Xu H F, He Y and Barrett S R H 2019 Appl. Phys. Lett. 114 254105 doi: 10.1063/1.5100524
    [29]
    Browning P, Shambaugh B and Dygert J 2017 Experimental study of dielectric barrier discharge driven duct flow for propulsion applications in unmanned aerial systems SAE Technical paper 2017-01-2063 (https://doi.org/doi.org/10.4271/2017-01-2063)
    [30]
    Greig A, Birzer C H and Arjomandi M 2013 AIAA J. 51 362 doi: 10.2514/1.J051793
    [31]
    Ozturk C and Jacob J 2008 Plasma micro-thrusters for microaerial vehiclesSAE Technical paper 2008-01-2244 (https://doi.org/10.4271/2008-01-2244)
    [32]
    Starikovskiy A and Aleksandrov N 2013 Prog. Energy Combust. Sci. 39 61 doi: 10.1016/j.pecs.2012.05.003
    [33]
    Breden D and Raja L 2012 AIAA J. 50 647 doi: 10.2514/1.J051238
    [34]
    Kosarev I N et al 2012 Plasma Sources Sci. Technol. 21 045012 doi: 10.1088/0963-0252/21/4/045012
    [35]
    Starikovskaia S M 2014 J. Phys. D: Appl. Phys. 47 353001 doi: 10.1088/0022-3727/47/35/353001
    [36]
    Cai J S et al 2017 Exp. Fluids 58 102 doi: 10.1007/s00348-017-2378-y
    [37]
    Liu Y et al 2018 Int. J. Heat Mass Transf. 124 319 doi: 10.1016/j.ijheatmasstransfer.2018.03.076
    [38]
    Meng X S et al 2019 Phys. Fluids 31 037103 doi: 10.1063/1.5086884
    [39]
    Xie S et al 2019 Plasma Sci. Technol. 21 055505 doi: 10.1088/2058-6272/aafc50
    [40]
    Pekárek S and Mikeš J 2014 Eur. Phys. J. D 68 310 doi: 10.1140/epjd/e2014-50393-x
    [41]
    Šimek M, Pekárek S and Prukner V 2012 Plasma Chem. Plasma Process. 32 743 doi: 10.1007/s11090-012-9382-z
    [42]
    Homola T et al 2020 Plasma Sources Sci. Technol. 29 095014 doi: 10.1088/1361-6595/aba987
    [43]
    Jolibois J, Takashima K and Mizuno A 2012 J. Electrostat. 70 300 doi: 10.1016/j.elstat.2012.03.011
    [44]
    Yu J et al 2019 Process Saf. Environ. Prot. 125 307 doi: 10.1016/j.psep.2019.03.031
    [45]
    Kim H H 2004 Plasma Process. Polym. 1 91 doi: 10.1002/ppap.200400028
    [46]
    Ambrico P F et al 2020 Sci. Rep. 10 3673 doi: 10.1038/s41598-020-60461-0
    [47]
    Ambrico P F et al 2017 J. Phys. D: Appl. Phys. 50 305401 doi: 10.1088/1361-6463/aa77c8
    [48]
    Lagarkov A N and Rutkevich I M 1994 Ionization Waves in Electrical Breakdown of Gases (New York: Springer) (https://doi.org/10.1007/978-1-4612-4294-9)
    [49]
    Boeuf J P, Lagmich Y and Pitchford L C 2009 J. Appl. Phys. 106 023115 doi: 10.1063/1.3183960
    [50]
    Unfer T and Boeuf J P 2009 J. Phys. D: Appl. Phys. 42 194017 doi: 10.1088/0022-3727/42/19/194017
    [51]
    Leonov S B, Adamovich I V and Soloviev V R 2016 Plasma Sources Sci. Technol. 25 063001 doi: 10.1088/0963-0252/25/6/063001
    [52]
    Mitsuhashi K et al 2021 Plasma Sources Sci. Technol. 30 04LT02 doi: 10.1088/1361-6595/abefa7
    [53]
    Opaits D F et al 2008 Phys. Plasmas 15 073505 doi: 10.1063/1.2955767
    [54]
    Enloe C L et al 2008 AIAA J. 46 2730 doi: 10.2514/1.33973
    [55]
    Huang B D et al 2020 Plasma Sources Sci. Technol. 29 044001 doi: 10.1088/1361-6595/ab7854
    [56]
    Simeni M S et al 2018 Plasma Sources Sci. Technol. 27 104001 doi: 10.1088/1361-6595/aae1c8
    [57]
    Starikovskaia S M et al 2010 J. Phys. D: Appl. Phys. 43 124007 doi: 10.1088/0022-3727/43/12/124007
    [58]
    Stepanyan S A, Soloviev V R and Starikovskaia S M 2014 J. Phys. D: Appl. Phys. 47 485201 doi: 10.1088/0022-3727/47/48/485201
    [59]
    Audier P et al 2011 IEEE Trans. Plasma Sci. 39 2180 doi: 10.1109/TPS.2011.2155100
    [60]
    Joussot R et al 2013 J. Phys. D: Appl. Phys. 46 125204 doi: 10.1088/0022-3727/46/12/125204
    [61]
    Kettlitz M et al 2020 Eur. Phys. J. D 74 110 doi: 10.1140/epjd/e2020-10082-y
    [62]
    Sokolova M V et al 2019 J. Phys. D: Appl. Phys. 52 324001 doi: 10.1088/1361-6463/ab20ef
    [63]
    Benard N et al 2012 J. Appl. Phys. 111 033303 doi: 10.1063/1.3682568
    [64]
    Benard N and Moreau E 2012 Appl. Phys. Lett. 100 193503 doi: 10.1063/1.4712125
    [65]
    Tirumala R et al 2014 J. Phys. D: Appl. Phys. 47 255203 doi: 10.1088/0022-3727/47/25/255203
    [66]
    Starikovskii A Y et al 2009 Plasma Sources Sci. Technol. 18 034015 doi: 10.1088/0963-0252/18/3/034015
    [67]
    Audier P et al 2014 Plasma Sources Sci. Technol. 23 065045 doi: 10.1088/0963-0252/23/6/065045
    [68]
    Pierre A et al 2012 Influence of the N2/O2 volumetric ratio on the behavior of a SDBD plasma actuator Proc. 6th AIAA Flow Control Conf. (New Orleans, Louisiana) (https://doi.org/10.2514/6.2012-3094)
    [69]
    Benard N et al 2011 IEEE Trans. Plasma Sci. 39 2222 doi: 10.1109/TPS.2011.2153876
    [70]
    Papadimas V et al 2021 Appl. Sci. 11 11930 doi: 10.3390/app112411930
    [71]
    Bian D L et al 2018 J. Appl. Phys. 124 183301 doi: 10.1063/1.5049463
    [72]
    Hanson R E, Houser N M and Lavoie P 2014 J. Appl. Phys. 115 043301 doi: 10.1063/1.4862309
    [73]
    Aba'a Ndong A C et al 2013 IEEE Trans. Dielectr. Electr. Insul. 20 1554 doi: 10.1109/TDEI.2013.6633683
    [74]
    Boeuf J P and Pitchford L C 2005 J. Appl. Phys. 97 103307 doi: 10.1063/1.1901841
    [75]
    Nishida H and Abe T 2011 Validation study of numerical simulation of discharge plasma on DBD plasma actuator Proc. 42nd AIAA Plasmadynamics and Lasers Conf. (Honolulu, Hawai) (https://doi.org/10.2514/6.2011-3913)
    [76]
    Bogdanov E A et al 2008 2D simulation and scaling of DBD plasma actuator in air Proc. 6th AIAA Aerospace Sciences Meeting and Exhibit (Reno, Nevada) (https://doi.org/10.2514/6.2008-1377)
    [77]
    Nakai K, Komuro A and Nishida H 2020 Phys. Plasmas 27 063518 doi: 10.1063/5.0006868
    [78]
    Soloviev V R and Krivtsov V M 2018 Plasma Sources Sci. Technol. 27 114001 doi: 10.1088/1361-6595/aae63e
    [79]
    Shang J S and Huang P G 2014 Prog. Aerosp. Sci. 67 29 doi: 10.1016/j.paerosci.2014.01.001
    [80]
    Likhanskii A V et al 2009 The role of the photoionization in the numerical modeling of the DBD plasma actuator 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition (Orlando, Florida) (https://doi.org/10.2514/6.2009-841)
    [81]
    Sato S and Ohnishi N 2016 Jpn. J. Appl. Phys. 55 07LD04 doi: 10.7567/JJAP.55.07LD04
    [82]
    Ren C H et al 2023 Plasma Sources Sci. Technol. 32 025004 doi: 10.1088/1361-6595/acb4b9
    [83]
    Konina K et al 2022 Plasma Sources Sci. Technol. 31 115001 doi: 10.1088/1361-6595/ac9a6c
    [84]
    Soloviev V R 2019 Plasma Phys. Rep. 45 264 doi: 10.1134/S1063780X19020119
    [85]
    Giotis K et al 2022 IEEE Trans. Plasma Sci. 50 2185 doi: 10.1109/TPS.2022.3176132
    [86]
    Cardoso R P et al 2007 J. Phys. D: Appl. Phys. 40 1394 doi: 10.1088/0022-3727/40/5/012
    [87]
    Su Z et al 2021 J. Phys. D: Appl. Phys. 54 33LT02 doi: 10.1088/1361-6463/ac00f0
    [88]
    Gazeli K et al 2015 J. Appl. Phys. 117 093302 doi: 10.1063/1.4914035
    [89]
    Voráč J, Kusýn L and Synek P 2019 Rev. Sci. Instrum. 90 123102 doi: 10.1063/1.5128455
    [90]
    Gail J, Schmidt A and Thoma M H 2023 IEEE Trans. Radiat. Plasma Med. Sci. 7 307 doi: 10.1109/TRPMS.2022.3210651
    [91]
    Huang X and Zhang X 2008 Phys. Fluids 20 037101 doi: 10.1063/1.2890448
    [92]
    Roy S and Wang C C 2009 J. Phys. D: Appl. Phys. 42 032004 doi: 10.1088/0022-3727/42/3/032004
    [93]
    Durscher R J and Roy S 2012 J. Phys. D: Appl. Phys. 45 035202 doi: 10.1088/0022-3727/45/3/035202
    [94]
    Lindner M et al 2021 Appl. Sci. 11 11106 doi: 10.3390/app112311106
    [95]
    Jiang H et al 2021 J. Phys. D: Appl. Phys. 54 345201 doi: 10.1088/1361-6463/ac0705
    [96]
    Komuro A et al 2019 Plasma Sources Sci. Technol. 28 065006 doi: 10.1088/1361-6595/ab1daf
  • Related Articles

    [1]Feiyue MAO, Nengchao WANG, Zhuo HUANG, Zhengkang REN, Song ZHOU, Chengshuo SHEN, Xiaoyi ZHANG, Ying HE, Qi ZHANG, Ruo JIA, Chuanxu ZHAO, Yangbo LI, Bo HU, Da LI, Abba Alhaji BALA, Zhipeng CHEN, Zhongyong CHEN, Zhoujun YANG, Yunfeng LIANG, Yonghua DING, Yuan PAN, J-TEXT Team. Study of the spectrum effect on the threshold of resonant magnetic perturbation penetration on J-TEXT[J]. Plasma Science and Technology, 2022, 24(12): 124002. DOI: 10.1088/2058-6272/ac9f2e
    [2]Hongmei DU (杜洪梅), Liping ZHANG (张丽萍), Dongao LI (李东澳). THz plasma wave instability in field effect transistor with electron diffusion current density[J]. Plasma Science and Technology, 2018, 20(11): 115001. DOI: 10.1088/2058-6272/aacaef
    [3]Alexander LYSENKO, Iurii VOLK. Influence of two-stream relativistic electron beam parameters on the space-charge wave with broad frequency spectrum formation[J]. Plasma Science and Technology, 2018, 20(3): 35002-035002. DOI: 10.1088/2058-6272/aaa358
    [4]Suyun ZHOU (周素云), Hui CHEN (陈辉), Yanfang LI (李艳芳). Breaking of a Langmuir wave in cold electron–positron–ion plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14008-014008. DOI: 10.1088/2058-6272/aa8cc0
    [5]Monzurul K AHMED, Om P SAH. Solitary kinetic Alfvén waves in a dense electron–positron–ion plasma with degenerate electrons and positrons[J]. Plasma Science and Technology, 2017, 19(12): 125302. DOI: 10.1088/2058-6272/aa8765
    [6]Neda SHAMSIAN, Babak SHIRANI BIDABADI, Hosein PIRJAMADI. Development of a radiographic method for measuring the discrete spectrum of the electron beam from a plasma focus device[J]. Plasma Science and Technology, 2017, 19(7): 75101-075101. DOI: 10.1088/2058-6272/aa632e
    [7]LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), SHI Lei (石磊), LIU Donglin (刘东林). Influences of Turbulent Reentry Plasma Sheath on Wave Scattering and Propagation[J]. Plasma Science and Technology, 2016, 18(6): 617-626. DOI: 10.1088/1009-0630/18/6/07
    [8]ZHU Zhenni(朱珍妮), WU Zhengwei(吴征威), LI Chunhua(李春华), YANG Weihong(杨维纮). Electron Acoustic Solitary Waves in Magnetized Quantum Plasma with Relativistic Degenerated Electrons[J]. Plasma Science and Technology, 2014, 16(11): 995-999. DOI: 10.1088/1009-0630/16/11/01
    [9]GAO Min (高敏), CHEN Shaoyong (陈少永), TANG Changjian (唐昌建). Electron Cyclotron Harmonic Wave Heating in Tokamak Plasmas with Different Polarization Modes[J]. Plasma Science and Technology, 2013, 15(4): 313-317. DOI: 10.1088/1009-0630/15/4/02
    [10]LI Chunzao(李春早), LIU Shaobin(刘少斌), BIAN Borui(卞博锐), DAI Zhaoyang(戴钊阳), ZHANG Xueyong(张学勇). Theoretical Analysis on Propagation of Electromagnetic Wave in Preformed Narrow Plasma Channel[J]. Plasma Science and Technology, 2012, 14(8): 702-707. DOI: 10.1088/1009-0630/14/8/04
  • Cited by

    Periodical cited type(7)

    1. Osca Engelbrecht, M., Ridgers, C.P., Dedrick, J. et al. Particle-in-cell simulations of high frequency capacitively coupled plasmas including spatially localised inductive-like heating. Plasma Sources Science and Technology, 2023, 32(12): 125003. DOI:10.1088/1361-6595/ad0fb1
    2. Eremin, D., Kemaneci, E., Matsukuma, M. et al. Modeling of very high frequency large-electrode capacitively coupled plasmas with a fully electromagnetic particle-in-cell code. Plasma Sources Science and Technology, 2023, 32(4): 044007. DOI:10.1088/1361-6595/accecb
    3. Sun, G., Zhang, S., Sun, A. et al. On the electron sheath theory and its applications in plasma-surface interactions. Plasma Science and Technology, 2022, 24(9): 095401. DOI:10.1088/2058-6272/ac6aa7
    4. Xing, Y., Qiao, N., Yu, J. et al. Spectroscopic depth profilometry of organic thin films upon inductively coupled plasma etching. Review of Scientific Instruments, 2022, 93(7): 073903. DOI:10.1063/5.0088718
    5. Vass, M., Wilczek, S., Derzsi, A. et al. Evolution of the bulk electric field in capacitively coupled argon plasmas at intermediate pressures. Plasma Sources Science and Technology, 2022, 31(4): 045017. DOI:10.1088/1361-6595/ac6361
    6. Su, Z.-X., Shi, D.-H., Liu, Y.-X. et al. Radially-dependent ignition process of a pulsed capacitively coupled RF argon plasma over 300 mm-diameter electrodes: Multi-fold experimental diagnostics. Plasma Sources Science and Technology, 2021, 30(12): 125013. DOI:10.1088/1361-6595/ac3e3f
    7. Zhao, K., Guo, Y.-Q., Zhang, Q.-Z. et al. Experimental Investigation of Nonlinear Standing Waves in DC/VHF Hybrid Capacitive Discharges. IEEE Transactions on Plasma Science, 2021, 49(11): 3392-3397. DOI:10.1109/TPS.2021.3120596

    Other cited types(0)

Catalog

    Figures(14)

    Article views (41) PDF downloads (39) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return