Advanced Search+
Zhiquan HE, Li LIU, Zhongqi HAO, Zhishuai XU, Qi WANG, Ying LU, Ziyi ZHAO, Jiulin SHI, Xingdao HE. Matrix effect suppressing in the element analysis of soils by laser-induced breakdown spectroscopy with acoustic correction[J]. Plasma Science and Technology, 2023, 25(12): 125504. DOI: 10.1088/2058-6272/ace954
Citation: Zhiquan HE, Li LIU, Zhongqi HAO, Zhishuai XU, Qi WANG, Ying LU, Ziyi ZHAO, Jiulin SHI, Xingdao HE. Matrix effect suppressing in the element analysis of soils by laser-induced breakdown spectroscopy with acoustic correction[J]. Plasma Science and Technology, 2023, 25(12): 125504. DOI: 10.1088/2058-6272/ace954

Matrix effect suppressing in the element analysis of soils by laser-induced breakdown spectroscopy with acoustic correction

More Information
  • Corresponding author:

    Zhongqi HAO, E-mail: hzq@nchu.edu.cn

  • Received Date: May 09, 2023
  • Revised Date: July 02, 2023
  • Accepted Date: July 19, 2023
  • Available Online: January 04, 2024
  • Published Date: October 10, 2023
  • Laser-induced breakdown spectroscopy (LIBS) has been used for soil analysis, but its measurement accuracy is often influenced by matrix effects of different kinds of soils. In this work, a method for matrix effect suppressing was developed using laser-induced plasma acoustic signals to correct the original spectrum, thereby improving the analysis accuracy of the soil elements. A good linear relationship was investigated firstly between the original spectral intensity and the acoustic signals. The relative standard deviations (RSDs) of Mg, Ca, Sr, and Ba elements were then calculated for both the original spectrum and the spectrum with the acoustic correction, and the RSDs were significantly reduced with the acoustic correction. Finally, calibration curves of Mg I 285.213 nm, Ca I 422.673 nm, Sr I 460.733 nm and Ba II 455.403 nm were established to assess the analytical performance of the proposed acoustic correction method. The values of the determination coefficient (R2) of the calibration curves for Mg, Ca, Sr, and Ba elements, corrected by the acoustic amplitude, are improved from 0.9845, 0.9588, 0.6165, and 0.6490 to 0.9876, 0.9677, 0.8768, and 0.8209, respectively. The values of R2 of the calibration curves corrected by the acoustic energy are further improved to 0.9917, 0.9827, 0.8835, and 0.8694, respectively. These results suggest that the matrix effect of LIBS on soils can be clearly improved by using acoustic correction, and acoustic energy correction works more efficiently than acoustic amplitude correction. This work provides a simple and efficient method for correcting matrix effects in the element analysis of soils by acoustic signals.

  • This research was financially supported by National Natural Science Foundation of China (No. 12064029), by Jiangxi Provincial Natural Science Foundation (No. 20202BABL202024), and by the Open project program of Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province (No. ED202208094).

  • [1]
    Villas-Boas P R et al 2020 Eur. J. Soil Sci. 71 805 doi: 10.1111/ejss.12889
    [2]
    El Haddad J, Canioni L and Bousquet B 2014 Spectrochim. Acta B 101 171 doi: 10.1016/j.sab.2014.08.039
    [3]
    Winefordner J D et al 2004 J. Anal. At. Spectrom. 19 1061 doi: 10.1039/b400355c
    [4]
    Ding Y et al 2019 Anal. Methods 11 3657 doi: 10.1039/C9AY01030K
    [5]
    Nicolodelli G et al 2019 TrAC, Trends Anal. Chem. 115 70 doi: 10.1016/j.trac.2019.03.032
    [6]
    Tavares T R et al 2022 Soil Tillage Res. 216 105250 doi: 10.1016/j.still.2021.105250
    [7]
    Xu X B et al 2020 Forensic Sci. Int. 310 110222 doi: 10.1016/j.forsciint.2020.110222
    [8]
    Marangoni B S et al 2016 Anal. Methods 8 78 doi: 10.1039/C5AY01615K
    [9]
    Windom B C and Hahn D W 2009 J. Anal. At. Spectrom. 24 1665 doi: 10.1039/b913495f
    [10]
    Body D and Chadwick B L 2001 Spectrochim. Acta B 56 725 doi: 10.1016/S0584-8547(01)00186-0
    [11]
    Guezenoc J, Gallet-Budynek A and Bousquet B 2019 Spectrochim. Acta B 160 105688 doi: 10.1016/j.sab.2019.105688
    [12]
    Sheng L W et al 2015 Chem. Res. Chin. Univ. 31 107 doi: 10.1007/s40242-014-4318-1
    [13]
    Zhu C W et al 2021 Microchem. J. 168 106408 doi: 10.1016/j.microc.2021.106408
    [14]
    Zhang B H et al 2015 Spectrosc. Spectral Anal. 35 1715 (in Chinese) doi: 10.3964/j.issn.1000-0593(2015)06-1715-04
    [15]
    Bredice F et al 2007 Spectrochim. Acta B 62 836 doi: 10.1016/j.sab.2007.06.011
    [16]
    Huang J S, Ke C B and Lin K C 2004 Spectrochim. Acta B 59 321 doi: 10.1016/j.sab.2003.12.007
    [17]
    Borisov O V et al 1999 Spectrochim. Acta B 54 1351 doi: 10.1016/S0584-8547(99)00083-X
    [18]
    Jantzi S C and Almirall J R 2014 Appl. Spectrosc. 68 963 doi: 10.1366/13-07351
    [19]
    Li Q Y et al 2020 J. Anal. At. Spectrom. 35 366 doi: 10.1039/C9JA00367C
    [20]
    Zhang P et al 2017 J. Anal. At. Spectrom. 32 2371 doi: 10.1039/C7JA00291B
    [21]
    Zhang P et al 2018 Anal. Chem. 90 4686 doi: 10.1021/acs.analchem.7b05284
    [22]
    Chen G Y and Yeung E S 1988 Anal. Chem. 60 2258 doi: 10.1021/ac00171a020
    [23]
    Huang F Z et al 2021 Appl. Opt. 60 1595 doi: 10.1364/AO.413853
    [24]
    Alvarez-Llamas C et al 2022 Anal. Chem. 94 1840 doi: 10.1021/acs.analchem.1c04792
    [25]
    Chide B et al 2019 Spectrochim. Acta B 153 50 doi: 10.1016/j.sab.2019.01.008
    [26]
    Hrdlicka A et al 2009 Spectrochim. Acta B 64 74
    [27]
    Zorov N B et al 2010 Spectrochim. Acta B 65 642 doi: 10.1016/j.sab.2010.04.009
    [28]
    Popov A M et al 2018 Spectrochim. Acta B 148 205 doi: 10.1016/j.sab.2018.07.005
    [29]
    Labutin T A et al 2005 Spectrochim. Acta B 60 775 doi: 10.1016/j.sab.2005.03.019
    [30]
    Li X L et al 2023 J. Hazard. Mater. 448 130885 doi: 10.1016/j.jhazmat.2023.130885
    [31]
    Sun C et al 2019 Sci. Rep. 9 11363 doi: 10.1038/s41598-019-47751-y
    [32]
    Wang B B et al 2023 J. Anal. At. Spectrom. 38 281 doi: 10.1039/D2JA00329E
    [33]
    Pathak P et al 2020 Assessment of the alkaline earth metals (Ca, Sr, Ba) and their associated health impacts Strontium Contamination in the Environment ed P Pathak and D K Gupta (Cham: Springer) p 227
    [34]
    Diaz D, Hahn D W and Molina A 2012 Appl. Spectrosc. 66 99
    [35]
    Murdoch N et al 2019 Planet. Space Sci. 165 260 doi: 10.1016/j.pss.2018.09.009
    [36]
    Hou J J et al 2019 Plasma Sci. Technol. 21 034016
    [37]
    Alvira F C, Orzi D J O and Bilmes G M 2009 Appl. Spectrosc. 63 192 doi: 10.1366/000370209787392067
    [38]
    Gornushkin S I et al 2002 Appl. Spectrosc. 56 433 doi: 10.1366/0003702021955088
    [39]
    Tang Y et al 2022 J. Anal. At. Spectrom. 37 1535 doi: 10.1039/D2JA00100D
  • Related Articles

    [1]Zhen ZHENG (郑振), Nong XIANG (项农), Jiale CHEN (陈佳乐), Siye DING (丁斯晔), Hongfei DU (杜红飞), Guoqiang LI (李国强), Yifeng WANG (王一丰), Haiqing LIU (刘海庆), Yingying LI (李颖颖), Bo LYU (吕波), Qing ZANG (臧庆). Kinetic equilibrium reconstruction for the NBI-and ICRH-heated H-mode plasma on EAST tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65103-065103. DOI: 10.1088/2058-6272/aab262
    [2]Qingxi YANG (杨庆喜), Wei SONG (宋伟), Qunshan DU (杜群山), Yuntao SONG (宋云涛), Chengming QIN (秦成明), Xinjun ZHANG (张新军), Yanping ZHAO (赵燕平). Thermal analysis and optimization of the EAST ICRH antenna[J]. Plasma Science and Technology, 2018, 20(2): 25603-025603. DOI: 10.1088/2058-6272/aa9609
    [3]Manman XU (徐曼曼), Yuntao SONG (宋云涛), Gen CHEN (陈根), Yanping ZHAO (赵燕平), Yuzhou MAO (毛玉周), Guang LIU (刘广), Zhen PENG (彭振). Tunable biasing magnetic field design of ferrite tuner for ICRF heating system in EAST[J]. Plasma Science and Technology, 2017, 19(11): 115601. DOI: 10.1088/2058-6272/aa8167
    [4]ZHANG Pengfei(张鹏飞), ZHANG Guogang(张国钢), DONG Jinlong(董金龙), LIU Wanying(刘婉莹), GENG Yingsan(耿英三). Non-Intrusive Magneto-Optic Detecting System for Investigations of Air Switching Arcs[J]. Plasma Science and Technology, 2014, 16(7): 661-668. DOI: 10.1088/1009-0630/16/7/06
    [5]YANG Fei(杨飞), XIAO Bingjia(肖炳甲), ZHANG Ruirui(张睿瑞). Construction and Implementation of the Online Data Analysis System on EAST[J]. Plasma Science and Technology, 2014, 16(5): 521-526. DOI: 10.1088/1009-0630/16/5/13
    [6]ZHANG Xiaodan (张小丹), HU Chundong (胡纯栋), SHENG Peng (盛鹏), LIU Zhimin (刘智民), et al.. Development of a Data Acquisition Control System for the First NBI on EAST[J]. Plasma Science and Technology, 2013, 15(12): 1247-1253. DOI: 10.1088/1009-0630/15/12/17
    [7]QIU Lilong (邱立龙), ZHUANG Ming (庄明), MAO Jin (毛晋), HU Liangbing (胡良兵), SHENG Linhai (盛林海). Optimization analysis and simulation of the EAST cryogenic system[J]. Plasma Science and Technology, 2012, 14(11): 1030-1034. DOI: 10.1088/1009-0630/14/11/13
    [8]HU Chundong(胡纯栋), NBI Team. Conceptual Design of Neutral Beam Injection System for EAST[J]. Plasma Science and Technology, 2012, 14(6): 567-572. DOI: 10.1088/1009-0630/14/6/30
    [9]WEN Xiaoqiong (温小琼), Wang Ming (王明), DING Zhenfeng (丁振峰), LIU Guishi (刘贵师). Decoloration of azo dye sunset yellow by a coaxial insulated-rod-to-cylinder underwater streamer discharge system[J]. Plasma Science and Technology, 2012, 14(4): 293-296. DOI: 10.1088/1009-0630/14/4/05
    [10]YANG Fei (杨飞), XIAO Bingjia (肖炳甲). Web-based Logbook System for EAST Experiments[J]. Plasma Science and Technology, 2010, 12(5): 632-635.

Catalog

    Figures(8)  /  Tables(2)

    Article views (21) PDF downloads (5) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return