Advanced Search+
Qiangyou HE, Zhigang DENG, Zhimeng ZHANG, Yadong XIA, Bo ZHANG, Lingbiao MENG, Shukai HE, Hua HUANG, Lei YANG, Hongjie LIU, Wei FAN, Chen LIN, Weimin ZHOU, Tingshuai LI, Xueqing YAN. Spatial and temporal evolution of electromagnetic pulses from solid target irradiated with multi-hundred-terawatt laser pulse inside target chamber[J]. Plasma Science and Technology, 2024, 26(2): 025201. DOI: 10.1088/2058-6272/ad0c21
Citation: Qiangyou HE, Zhigang DENG, Zhimeng ZHANG, Yadong XIA, Bo ZHANG, Lingbiao MENG, Shukai HE, Hua HUANG, Lei YANG, Hongjie LIU, Wei FAN, Chen LIN, Weimin ZHOU, Tingshuai LI, Xueqing YAN. Spatial and temporal evolution of electromagnetic pulses from solid target irradiated with multi-hundred-terawatt laser pulse inside target chamber[J]. Plasma Science and Technology, 2024, 26(2): 025201. DOI: 10.1088/2058-6272/ad0c21

Spatial and temporal evolution of electromagnetic pulses from solid target irradiated with multi-hundred-terawatt laser pulse inside target chamber

More Information
  • Giant electromagnetic pulses (EMPs) induced by high-power laser irradiating solid targets interfere with various experimental diagnoses and even damage equipment, so unveiling the evolution of EMPs inside the laser chamber is crucial for designing effective EMP shielding. In this work, the transmission characteristics of EMPs as a function of distances from the target chamber center (TCC) are studied using B-dot probes. The mean EMP amplitude generated by picosecond laser-target interaction reaches 561 kV m−1, 357 kV m−1, 395 kV m−1, and 341 kV m−1 at 0.32 m, 0.53 m, 0.76 m, and 1 m from TCC, which decreases dramatically from 0.32 m to 0.53 m. However, it shows a fluctuation from 0.53 m to 1 m. The temporal features of EMPs indicate that time-domain EMP signals near the target chamber wall have a wider full width at half maximum compared to that close to TCC, mainly due to the echo oscillation of electromagnetic waves inside the target chamber based on simulation and experimentation. The conclusions of this study will provide a new approach to mitigate strong electromagnetic pulses by decreasing the echo oscillation of electromagnetic waves inside the target chamber during laser coupling with targets.

  • [1]
    Freidberg J et al 1972 Phys. Rev. Lett. 28 795 doi: 10.1103/PhysRevLett.28.795
    [2]
    Brunel F 1987 Phys. Rev. Lett. 59 52 doi: 10.1103/PhysRevLett.59.52
    [3]
    Kruer W and Estabrook K 1985 Phys. Fluid. 28 430 doi: 10.1063/1.865171
    [4]
    Yang T-Y B et al 1995 Phys. Plasmas 2 3146 doi: 10.1063/1.871146
    [5]
    Matte J and Aguenaou K 1992 Phys. Rev. A 45 2558 doi: 10.1103/PhysRevA.45.2558
    [6]
    Bisesto F et al 2020 High Power Laser Sci. Eng. 8 e23 doi: 10.1017/hpl.2020.19
    [7]
    Wilks S et al 2001 Phys. Plasmas 8 542 doi: 10.1063/1.1333697
    [8]
    Cikhardt J et al 2014 Rev. Sci. Instrum. 85 103507 doi: 10.1063/1.4898016
    [9]
    Poyé A et al 2015 Phys. Rev. E 92 043107 doi: 10.1103/PhysRevE.92.043107
    [10]
    Chen L M et al 2008 Phys. Rev. Lett. 100 045004 doi: 10.1103/PhysRevLett.100.045004
    [11]
    Lee H et al 2009 Phys. Rev. Lett. 102 115001 doi: 10.1103/PhysRevLett.102.115001
    [12]
    Norreys P A et al 1999 Phys. Plasmas 6 2150 doi: 10.1063/1.873466
    [13]
    Brown Jr C G et al 2010 J. Phys.: Conf. Ser. 244 032001
    [14]
    Consoli F et al 2019 Sci. Rep. 9 1 doi: 10.1038/s41598-018-37186-2
    [15]
    Rączka P et al 2017 Laser Part. Beams 35 677 doi: 10.1017/S026303461700074X
    [16]
    Consoli F et al 2016 Sci. Rep. 6 1 doi: 10.1038/s41598-016-0001-8
    [17]
    Hamster H et al 1993 Phys. Rev. Lett. 71 2725 doi: 10.1103/PhysRevLett.71.2725
    [18]
    Scisciò M et al 2021 High Power Laser Sci. Eng. 9 e64 doi: 10.1017/hpl.2021.50
    [19]
    Kugland N et al 2012 Appl. Phys. Lett. 101 024102 doi: 10.1063/1.4734506
    [20]
    Consoli F et al 2021 Philos. Trans. A Math. Phys. Eng. Sci. 379 20200022
    [21]
    Bradford P et al 2018 High Power Laser Sci. Eng. 6 e21 doi: 10.1017/hpl.2018.21
    [22]
    Jin H B et al 2018 Plasma Sci. Technol. 20 115201 doi: 10.1088/2058-6272/aac838
    [23]
    He Q Y et al 2022 Nucl. Fusion 62 066006 doi: 10.1088/1741-4326/ac54cf
    [24]
    Xia Y D et al 2020 Matter Radiat. Extr. 5 017401 doi: 10.1063/1.5114663
    [25]
    Yang M et al 2017 Laser Phys. Lett. 15 016101
    [26]
    Yang Y et al 2022 IEEE Trans. Nucl. Sci. 69 2027 doi: 10.1109/TNS.2022.3187569
    [27]
    Yang Y M et al 2018 Laser Phys. 29 016003
    [28]
    Bardon M et al 2020 Phys. Rev. Res. 2 033502 doi: 10.1103/PhysRevResearch.2.033502
    [29]
    Dubois J L et al 2018 Rev. Sci. Instrum. 89 103301 doi: 10.1063/1.5038652
    [30]
    Minenna D F et al 2020 Phys. Plasmas 27 063102 doi: 10.1063/5.0006666
    [31]
    He Q Y et al 2021 Plasma Sci. Technol. 23 115202 doi: 10.1088/2058-6272/ac21b7
    [32]
    Su J Q et al 2015 Progress on the XG-III high-intensity laser facility with three synchronized beams SPIE (Chengdu, China, 25–29 August, 2014) vol 9255 p 925511
    [33]
    Zhou S et al 2016 Appl. Opt. 55 8003 doi: 10.1364/AO.55.008003
    [34]
    Zhu Q H et al 2018 Laser Phys. Lett. 15 015301 doi: 10.1088/1612-202X/aa94e9
    [35]
    Kuang L Y et al 2020 Plasma Sci. Technol. 22 085201 doi: 10.1088/2058-6272/ab8f1c
    [36]
    Consoli F et al 2018 Plasma Phys. Control. Fusion 60 105006 doi: 10.1088/1361-6587/aad709
    [37]
    Xia Y D et al 2020 Phys. Plasmas 27 032705 doi: 10.1063/1.5140585
    [38]
    De Marco M et al 2017 Phys. Plasmas 24 083103 doi: 10.1063/1.4995475
    [39]
    Mao C and Zhou H 2008 IEEE Trans. Electromagn Compat. 50 97 doi: 10.1109/TEMC.2007.911935
    [40]
    Ullah S et al 2020 IEEE Trans. Plasma Sci. 48 3261 doi: 10.1109/TPS.2020.3012310
    [41]
    Consoli F et al 2015 Experiments on electromagnetic pulse (EMP) generated by laser-plasma interaction in nanosecond regime Proc. IEEE 15th Int. Conf. on Environment and Electrical Engineering (EEEIC) (Rome, Italy, 10–13 June 2015
    [42]
    Consoli F et al 2020 High Power Laser Sci. Eng. 8 e22 doi: 10.1017/hpl.2020.13
    [43]
    De Marco M et al 2014 J. Phys.: Conf. Ser. 508 012007
    [44]
    Mead M J et al 2004 Rev. Sci. Instrum. 75 4225 doi: 10.1063/1.1787606
    [45]
    Yi T et al 2016 Photonic Sens. 6 249 doi: 10.1007/s13320-016-0346-4
    [46]
    Dubois J L et al 2014 Phys. Rev. E 89 013102 doi: 10.1103/PhysRevE.89.013102
    [47]
    Poyé A et al 2018 Phys. Rev. E 97 019903
    [48]
    Poyé A et al 2015 Phys. Rev. E 91 043106 doi: 10.1103/PhysRevE.91.043106
    [49]
    Consoli F et al 2015 Physics Procedia 62 11 doi: 10.1016/j.phpro.2015.02.004
    [50]
    Yang J W et al 2016 Plasma Sci. Technol. 18 1044 doi: 10.1088/1009-0630/18/10/13
    [51]
    Zhao L J et al 2019 Plasma Sci. Technol. 22 025601
    [52]
    Xu Y L et al 2021 Chin. Phys. B 31 025205
    [53]
    De Marco M et al 2015 Nukleonika 60 239 doi: 10.1515/nuka-2015-0043
    [54]
    De Marco M et al 2016 J. Instrum. 11 C06004 doi: 10.1088/1748-0221/11/06/C06004
    [55]
    Rączka P et al 2019 J. Instrum. 14 P04008 doi: 10.1088/1748-0221/14/04/P04008
    [56]
    Zhang G J et al 2019 Fusion Eng. Des. 141 21 doi: 10.1016/j.fusengdes.2019.02.059
    [57]
    Hong W et al 2021 Matter Radiat. Extr. 6 064401 doi: 10.1063/5.0016019
    [58]
    He L H et al 2018 Results Phys. 11 769 doi: 10.1016/j.rinp.2018.10.021
  • Related Articles

    [1]Bo LIU, Heng ZHANG, Bin XU, Zhengzheng MA, Hui LI, Wenshan DUAN. Detecting the meteoroid by measuring the electromagnetic waves excited by the collision between the hypervelocity meteoroid and spacecraft[J]. Plasma Science and Technology, 2022, 24(11): 115301. DOI: 10.1088/2058-6272/ac7542
    [2]Shuang LI, Xinzheng GUO, Yongqiang FU, Jianjun LI, Ruobing ZHANG. Hydrophobicity changes of polluted silicone rubber introduced by spatial and dose distribution of plasma jet[J]. Plasma Science and Technology, 2022, 24(4): 044006. DOI: 10.1088/2058-6272/ac57ff
    [3]Qiangyou HE (何强友), Ning KANG (康宁), Lei REN (任磊), Chao TIAN(田超), Chuanke WANG (王传珂), Zhimeng ZHANG (张智猛), Dongxiao LIU (刘东晓), Lei YANG (杨雷), Huiya LIU (刘会亚), Mingying SUN (孙明营), Baoqiang ZHU (朱宝强), Weimin ZHOU (周维民), Tingshuai LI (李廷帅). Spatial and temporal evolution of electromagnetic pulses generated at Shenguang-II series laser facilities[J]. Plasma Science and Technology, 2021, 23(11): 115202. DOI: 10.1088/2058-6272/ac21b7
    [4]Hongyue LI (李红月), Xingwei WU (吴兴伟), Cong LI (李聪), Yong WANG (王勇), Ding WU (吴鼎), Jiamin LIU (刘佳敏), Chunlei FENG (冯春雷), Hongbin DING (丁洪斌). Study of spatial and temporal evolution of Ar and F atoms in SF6/Ar microsecond pulsed discharge by optical emission spectroscopy[J]. Plasma Science and Technology, 2019, 21(7): 74008-074008. DOI: 10.1088/2058-6272/ab0c46
    [5]Hanbing JIN (金晗冰), Cui MENG (孟萃), Yunsheng JIANG (姜云升), Ping WU (吴平), Zhiqian XU (徐志谦). Simulation of electromagnetic pulses generated by escaped electrons in a high- power laser chamber[J]. Plasma Science and Technology, 2018, 20(11): 115201. DOI: 10.1088/2058-6272/aac838
    [6]Yue HUA (滑跃), Jian SONG (宋健), Zeyu HAO (郝泽宇), Gailing ZHANG (张改玲), Chunsheng REN (任春生). Effects of direct current discharge on the spatial distribution of cylindrical inductivelycoupled plasma at different gas pressures[J]. Plasma Science and Technology, 2018, 20(1): 14005-014005. DOI: 10.1088/2058-6272/aa8ea8
    [7]Zhenyu WANG (王振宇), Binhao JIANG (江滨浩), Yuming YAN (严禹明), Hailong ZHAO (赵海龙), N A STROKIN. Spatial charge and compensation method in a whirler[J]. Plasma Science and Technology, 2017, 19(5): 55507-055507. DOI: 10.1088/2058-6272/aa59f4
    [8]YANG Jinwen (杨进文), LI Tingshuai (李廷帅), YI Tao (易涛), WANG Chuanke (王传珂), YANG Ming (杨鸣), YANG Weiming (杨为明), LIU Shenye (刘慎业), JIANG Shaoen (江少恩), DING Yongkun (丁永坤). Electromagnetic Pulses Generated From Laser Target Interactions at Shenguang II Laser Facility[J]. Plasma Science and Technology, 2016, 18(10): 1044-1048. DOI: 10.1088/1009-0630/18/10/13
    [9]XU Xiufeng (徐修峰), LI Shiping (李世平), CAO Hongrui (曹宏睿), XIAO Rui (肖锐), et al.. A Simulation Study on the Flash X-Ray Spectra Spatial Distribution[J]. Plasma Science and Technology, 2013, 15(11): 1165-1168. DOI: 10.1088/1009-0630/15/11/16
    [10]WANG Qing (王庆), WANG Yongfu (王永富), BA Dechun (巴德纯), YUE Xiangji (岳向吉). The Effect of Ion Current Density on Target Etching in Radio Frequency-Magnetron Sputtering Process[J]. Plasma Science and Technology, 2012, 14(3): 235-239. DOI: 10.1088/1009-0630/14/3/09
  • Cited by

    Periodical cited type(3)

    1. He, Q.-Y., Wang, Z.-T., Deng, Z.-G. et al. Generation and regulation of electromagnetic pulses induced by multi-petawatt laser coupling with gas jets. Nuclear Science and Techniques, 2025, 36(6): 100. DOI:10.1007/s41365-025-01692-6
    2. He, Q.Y., Yan, W., Liu, Z.P. et al. Measurement of electromagnetic pulse in laser acceleration enhanced by near-critical density targets. Physics of Plasmas, 2024, 31(10): 103303. DOI:10.1063/5.0231143
    3. Xie, J., Wang, Z., Li, M. et al. Laser-driven electron emission and expansion for the generation and guidance of giant EMPs. Optics Letters, 2024, 49(15): 4114-4117. DOI:10.1364/OL.532085
    1. He, Q.-Y., Wang, Z.-T., Deng, Z.-G. et al. Generation and regulation of electromagnetic pulses induced by multi-petawatt laser coupling with gas jets. Nuclear Science and Techniques, 2025, 36(6): 100. DOI:10.1007/s41365-025-01692-6
    2. He, Q.Y., Yan, W., Liu, Z.P. et al. Measurement of electromagnetic pulse in laser acceleration enhanced by near-critical density targets. Physics of Plasmas, 2024, 31(10): 103303. DOI:10.1063/5.0231143
    3. Xie, J., Wang, Z., Li, M. et al. Laser-driven electron emission and expansion for the generation and guidance of giant EMPs. Optics Letters, 2024, 49(15): 4114-4117. DOI:10.1364/OL.532085

    Other cited types(0)

Catalog

    Article views (24) PDF downloads (19) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return