
Citation: | Tao WANG, Shizhao WEI, Sergio BRIGUGLIO, Gregorio VLAD, Fulvio ZONCA, Zhiyong QIU. Nonlinear dynamics of the reversed shear Alfvén eigenmode in burning plasmas[J]. Plasma Science and Technology, 2024, 26(5): 053001. DOI: 10.1088/2058-6272/ad15e0 |
In a tokamak fusion reactor operated at steady state, the equilibrium magnetic field is likely to have reversed shear in the core region, as the noninductive bootstrap current profile generally peaks off-axis. The reversed shear Alfvén eigenmode (RSAE) as a unique branch of the shear Alfvén wave in this equilibrium, can exist with a broad spectrum in wavenumber and frequency, and be resonantly driven unstable by energetic particles (EP). After briefly discussing the RSAE linear properties in burning plasma condition, we review several key topics of the nonlinear dynamics for the RSAE through both wave-EP resonance and wave-wave coupling channels, and illustrate their potentially important role in reactor-scale fusion plasmas. By means of simplified hybrid MHD-kinetic simulations, the RSAEs are shown to have typically broad phase space resonance structure with both circulating and trapped EP, as results of weak/vanishing magnetic shear and relatively low frequency. Through the route of wave-EP nonlinearity, the dominant saturation mechanism is mainly due to the transported resonant EP radially decoupling with the localized RSAE mode structure, and the resultant EP transport generally has a convective feature. The saturated RSAEs also undergo various nonlinear couplings with other collective oscillations. Two typical routes as parametric decay and modulational instability are studied using nonlinear gyrokinetic theory, and applied to the scenario of spontaneous excitation by a finite amplitude pump RSAE. Multiple RSAEs could naturally couple and induce the spectral energy cascade into a low frequency Alfvénic mode, which may effectively transfer the EP energy to fuel ions via collisionless Landau damping. Moreover, zero frequency zonal field structure could be spontaneously excited by modulation of the pump RSAE envelope, and may also lead to saturation of the pump RSAE by both scattering into stable domain and local distortion of the continuum structure.
As a key target of next-step fusion devices, the China Fusion Engineering Test Reactor (CFETR) should achieve self-sufficiency in case of tritium, that is, a tritium breeding ratio (TBR) > 1, for which, the tritium burn-up fraction (fburn-up) should be > 3% [1, 2]. The latest results of the one-modelling framework for integrated tasks model show that as the fuelling (deuterium and tritium) peak location changes from r/a=0.9 to 0.7,
Alfvén, Lindberg, and Mitlid et al first proposed CT technology as a fusion concept in 1960 [12]. In 1988, in the Ring ACcelerator Experiment (RACE) device of the Lawrence Livermore National Laboratory (LLNL), Hammer et al developed a simple one-dimensional point model to describe the trajectory of the CT in the acceleration region; the model results were in good agreement with the experiments [13]. In the same year, Parks and Perkins et al proposed the use of CT injection to fuel a reactor-grade tokamak [14, 15]. Thereafter, studies have attempted to validate the feasibility of CT injection and investigate the interactions between CT plasma and tokamak plasma. In 1992, the first tokamak fuelling experiment through CT injection was performed on Caltech's ENCORE tokamak with CT density of approximately
The KTX-CTI device presented herein comprises a host system, a gas delivery system, a vacuum chamber, four power supply units, and various diagnostics systems. The overall length of the host system is approximately 2 m, and it includes the formation, compression, and acceleration regions, as shown in figure 2. The inner electrodes of the formation and acceleration regions are separate, while the outer electrodes are shared. Furthermore, the host system has a coaxial configuration, and the length of the formation region is shorter than that of the acceleration region (
The formation and acceleration bank currents play an important role in the performance of the CT plasma. The discharge voltage of the formation and acceleration bank capacitors in a typical shot is
NCT=∫VnedV≈vCTSCT∫nedt, | (1) |
where
To verify the stability of KTX-CTI, CT density of multi-shots with different solenoid voltages and the same formation and acceleration bank voltages are overlaid in figure 4. The electron density exhibits a rapid increase (~
The resistance and inductance of the CT plasma are considered to be very small because the current waveforms of the formation bank under different CT masses are approximately the same, as shown in figure 5. Therefore, only the impacts of the host system, cables, ignitions, and capacitors are considered in the circuit parameters estimation. The basic calculation equations are as follows:
Lcable=μ0l2π(ln(routrin)+14), | (2) |
Lhost=μ0l2πln(routrin), | (3) |
R=ρls=ρlπ[r2-(r-d)2], | (4) |
where
Device | Host system | Cables | Ignitrons | Capacitors |
Resistance ( |
7.42 | 0.09 | Ignored | 1.94 |
Inductance ( |
213.27 | 40.12 | 5 | Ignored |
To ensure accuracy in the above estimation, we start from the circuit model, solve the ordinary differential equation of the circuit and obtain the mathematical form of the current in the formation region, and then perform NRA on the current to reverse the circuit parameters. The detailed derivation process is as follows.
Based on Kirchhoff's law and the basic principle of RLC circuit (figure 6), the loop equation of the circuit can be written as follows:
-Uform+URform+ULform=0, | (5) |
IF=CformdUformdt, | (6) |
Uform=Q(t)Cform, | (7) |
IF=-dQ(t)dt, | (8) |
dUformdt=-IFCform, | (9) |
URform=RformIF, | (10) |
dURformdt=RformdIFdt, | (11) |
ULform=d(LformIF)dt=LformdIFdt, | (12) |
where
The second derivative of equation (5) can be simplified according to equations (6)–(12) as follows:
d2IFdt2+RformLformdIFdt+IFLformCform=0. | (13) |
Furthermore, the mathematical form of the current of the formation region,
IF=2Uform√Rform2-4LformCforme-Rform2Lformtsin√Rform2-4LformCform2Lformt+C1e-Rform2Lformtcos√Rform2-4LformCform2Lformt, | (14) |
where
IF=2Uform√Rform2-4LformCforme-Rform2Lformtsin√Rform2-4LformCform2Lformt. | (15) |
The circuit parameters can be estimated more accurately from equation (15) and by employing nonlinear regression fitting on the actual measured current waveform. Fast Fourier transform is performed on the current waveform to obtain the period information, as shown in figure 7. All the oscillation periods under different CT masses are ~25.65 μs (± 0.03 μs). Furthermore, it is evident from the enlarged view of figure 7(b) that when the resonance amplitude decreases, the period slightly increases, which is consistent with the characteristics of the RLC circuit. However, this slight change has little effect on the subsequent estimation of the circuit parameters. Subsequently, the resonance period and capacitance of the formation bank were fixed and the current waveform was fitted according to equation (15) with the NRA method. The fitting results were found to be in good agreement with the experimental results (figure 8), with the goodness of fit index
Methods | |||
The NRA method | |||
The RLF method |
The point model is generally used to describe the motion of CT in the acceleration region, and the basic equations are as follows:
Ltotal=Lext+Lacc·x, | (16) |
mCTd2xdt2=12Lacc.I2acc-Fdrag, | (17) |
d2(LtotalIacc)dt2+RextdIaccdt+IaccCacc=0, | (18) |
Lacc=μ02πln(routrin). | (19) |
Here,
For comparison, we substitute the external input parameters calculated by the NRA and RLF methods (as shown in table 3) into the point model, respectively, and use the fourth-order Runge–Kutta method to numerically solve the above equations system (equations (16)–(19)). The circuit parameters in tables 2 and 3 are different, since the circuit loop changes when the CT enters the acceleration region. The parameters in table 3 are obtained after deducting the inner formation electrode and adding the electrode connectors of the acceleration and the compression regions on the basis of table 2. Figure 9 presents the comparison of the current waveforms in the acceleration region in the point model calculation and the experimental measurement (shot#200605024). Here, approximately only the first 1/4 cycle of the simulated data is covered, owing to the limited length of the acceleration region. At about
Parameters | The NRA method | The RLF method |
9.52 | 9.47 | |
240.71 | 300.97 | |
100 | 100 | |
70 | 70 | |
35 | 35 |
Figure 10 further presents the comparison of the differences in the displacement and velocity calculated using the point model based on these two methods. The black diamonds show the experimental data (shot#200605030 with the CT mass
According to the more accurate NRA-based point model, the CT plasma behaviour, especially the velocity simulation, can be predicted more accurately. This will aid in broadening the scope of research and device upgrades. For example, for the central fuelling requirements of a KTX device, the required CT velocity,
In figure 12, the acceleration efficiency of the KTX-CTI system has been further investigated by the NRA-based point model. Here, the abscissa is the ratio of the inner and outer radii of the acceleration region, while the ordinate is the acceleration efficiency, defined as follows:
η=mCTvCT2CaccUacc2. | (20) |
Here,
The KTX-CTI system in USTC was successfully constructed and tested. The maximum parameters that this system can achieve are an electron density of
[1] |
Alfvén H 1942 Nature 150 405 doi: 10.1038/150405d0
|
[2] |
Chen L and Zonca F 2016 Rev. Mod. Phys. 88 015008 doi: 10.1103/RevModPhys.88.015008
|
[3] |
Heidbrink W W et al 2007 Phys. Rev. Lett. 99 245002 doi: 10.1103/PhysRevLett.99.245002
|
[4] |
Ding R et al 2015 Nucl. Fusion 55 023013 doi: 10.1088/0029-5515/55/2/023013
|
[5] |
Fasoli A et al 2007 Nucl. Fusion 47 S264 doi: 10.1088/0029-5515/47/6/S05
|
[6] |
Sharapov S E et al 2002 Phys. Plasmas 9 2027 doi: 10.1063/1.1448346
|
[7] |
Zonca F et al 2002 Phys. Plasmas 9 4939 doi: 10.1063/1.1519241
|
[8] |
Grad H 1969 Physics Today 22 34 doi: 10.1063/1.3035293
|
[9] |
Chen L and Hasegawa A 1974 Phys. Fluids 17 1399 doi: 10.1063/1.1694904
|
[10] |
Hasegawa A and Chen L 1976 Phys. Fluids 19 1924 doi: 10.1063/1.861427
|
[11] |
Chen L, Zonca F and Lin Y 2021 Rev. Mod. Plasma Phys. 5 1 doi: 10.1007/s41614-020-00049-3
|
[12] |
Chen L 1994 Phys. Plasmas 1 1519 doi: 10.1063/1.870702
|
[13] |
Cheng C Z, Chen L and Chance M S 1985 Ann. Phys. 161 21 doi: 10.1016/0003-4916(85)90335-5
|
[14] |
Kieras C E and Tataronis J A 1982 J. Plasma Phys. 28 395 doi: 10.1017/S0022377800000386
|
[15] |
Heidbrink W W et al 1993 Phys. Rev. Lett. 71 855 doi: 10.1103/PhysRevLett.71.855
|
[16] |
Zonca F, Chen L and Santoro R A 1996 Plasma Phys. Control. Fusion 38 2011 doi: 10.1088/0741-3335/38/11/011
|
[17] |
Mett R R and Mahajan S M 1992 Phys. Fluids B 4 2885 doi: 10.1063/1.860459
|
[18] |
Zonca F and Chen L 1996 Phys. Plasmas 3 323 doi: 10.1063/1.871857
|
[19] |
Zonca F and Chen L 2014 Phys. Plasmas 21 072120 doi: 10.1063/1.4889019
|
[20] |
Zonca F and Chen L 2014 Phys. Plasmas 21 072121 doi: 10.1063/1.4889077
|
[21] |
Wang X, Zonca F and Chen L 2010 Plasma Phys. Control. Fusion 52 115005 doi: 10.1088/0741-3335/52/11/115005
|
[22] |
Kimura H et al 1998 Nucl. Fusion 38 1303 doi: 10.1088/0029-5515/38/9/304
|
[23] |
Takechi M et al 2005 Phys. Plasmas 12 082509 doi: 10.1063/1.1938973
|
[24] |
Breizman B N et al 2003 Phys. Plasmas 10 3649 doi: 10.1063/1.1597495
|
[25] |
Berk H L et al 2001 Phys. Rev. Lett. 87 185002 doi: 10.1103/PhysRevLett.87.185002
|
[26] |
Fu G Y and Berk H L 2006 Phys. Plasmas 13 052502 doi: 10.1063/1.2196246
|
[27] |
Gorelenkov N N 2008 Phys. Plasmas 15 110701 doi: 10.1063/1.3027512
|
[28] |
Deng W J et al 2010 Phys. Plasmas 17 112504 doi: 10.1063/1.3496057
|
[29] |
Huang J et al 2020 Nucl. Fusion 60 126007 doi: 10.1088/1741-4326/abaf33
|
[30] |
Heidbrink W W et al 2013 Phys. Plasmas 20 082504 doi: 10.1063/1.4817950
|
[31] |
Chen W et al 2014 Nucl. Fusion 54 104002 doi: 10.1088/0029-5515/54/10/104002
|
[32] |
Dreval M et al 2022 Nucl. Fusion 62 056001 doi: 10.1088/1741-4326/ac45a4
|
[33] |
Breizman B N and Sharapov S E 2011 Plasma Phys. Control. Fusion 53 054001 doi: 10.1088/0741-3335/53/5/054001
|
[34] |
Shimada M et al 2007 Nucl. Fusion 47 S1 doi: 10.1088/0029-5515/47/6/S01
|
[35] |
Wan Y X et al 2017 Nucl. Fusion 57 102009 doi: 10.1088/1741-4326/aa686a
|
[36] |
Creely A J et al 2020 J. Plasma Phys. 86 865860502 doi: 10.1017/S0022377820001257
|
[37] |
Fisch N J 2000 Nucl. Fusion 40 1095 doi: 10.1088/0029-5515/40/6/307
|
[38] |
Gormezano C et al 2007 Nucl. Fusion 47 S285 doi: 10.1088/0029-5515/47/6/S06
|
[39] |
Sauter O, Angioni C and Lin-Liu Y R 1999 Phys. Plasmas 6 2834 doi: 10.1063/1.873240
|
[40] |
Wang T et al 2018 Phys. Plasmas 25 062509 doi: 10.1063/1.5026652
|
[41] |
Wang T et al 2019 Phys. Plasmas 26 012504 doi: 10.1063/1.5064863
|
[42] |
Wang T et al 2020 Nucl. Fusion 60 126032 doi: 10.1088/1741-4326/abb2d4
|
[43] |
Wei S Z et al 2022 Nucl. Fusion 62 126038 doi: 10.1088/1741-4326/ac968f
|
[44] |
Chen L and Zonca F 2017 Phys. Plasmas 24 072511 doi: 10.1063/1.4993056
|
[45] |
Falessi M V et al 2020 J. Plasma Phys. 86 845860501 doi: 10.1017/S0022377820000975
|
[46] |
Tsai S T and Chen L 1993 Phys. Fluids B 5 3284 doi: 10.1063/1.860624
|
[47] |
Zonca F et al 1998 Plasma Phys. Control. Fusion 40 2009 doi: 10.1088/0741-3335/40/12/002
|
[48] |
Zonca F et al 1999 Phys. Plasmas 6 1917 doi: 10.1063/1.873449
|
[49] |
Ma R R et al 2022 Plasma Phys. Control. Fusion 64 035019 doi: 10.1088/1361-6587/ac434a
|
[50] |
Ma R R et al 2023 Phys. Plasmas 30 042105 doi: 10.1063/5.0141186
|
[51] |
Chen L and Zonca F 2012 Phys. Rev. Lett. 109 145002 doi: 10.1103/PhysRevLett.109.145002
|
[52] |
Wei S Z et al 2021 J. Plasma Phys. 87 905870505 doi: 10.1017/S0022377821000908
|
[53] |
Lin Z H et al 1998 Science 281 1835 doi: 10.1126/science.281.5384.1835
|
[54] |
Zonca F et al 2015 Plasma Phys. Control. Fusion 57 014024 doi: 10.1088/0741-3335/57/1/014024
|
[55] |
Connor J W, Hastie R J and Taylor J B 1978 Phys. Rev. Lett. 40 396 doi: 10.1103/PhysRevLett.40.396
|
[56] |
Biglari H and Chen L 1991 Phys. Rev. Lett. 67 3681 doi: 10.1103/PhysRevLett.67.3681
|
[57] |
Chen L and Zonca F 2011 EPL 96 35001 doi: 10.1209/0295-5075/96/35001
|
[58] |
Chen L and Zonca F 2013 Phys. Plasmas 20 055402 doi: 10.1063/1.4804628
|
[59] |
Park W et al 1992 Phys. Fluids B 4 2033 doi: 10.1063/1.860011
|
[60] |
Briguglio S et al 1995 Phys. Plasmas 2 3711 doi: 10.1063/1.871071
|
[61] |
Frieman E A and Chen L 1982 Phys. Fluids 25 502 doi: 10.1063/1.863762
|
[62] |
Rosenbluth M N and Hinton F L 1998 Phys. Rev. Lett. 80 724 doi: 10.1103/PhysRevLett.80.724
|
[63] |
Sagdeev R Z and Galeev A A 1969 Nonlinear Plasma Theory (New York: Benjamin
|
[64] |
Wei S Z et al 2021 Chin. Phys. Lett. 38 035201 doi: 10.1088/0256-307X/38/3/035201
|
[65] |
Berk H L and Breizman B N 1990 Phys. Fluids B 2 2226 doi: 10.1063/1.859404
|
[66] |
Berk H L and Breizman B N 1990 Phys. Fluids B 2 2235 doi: 10.1063/1.859405
|
[67] |
Berk H L and Breizman B N 1990 Phys. Fluids B 2 2246 doi: 10.1063/1.859406
|
[68] |
Zonca F et al 2015 New J. Phys. 17 013052 doi: 10.1088/1367-2630/17/1/013052
|
[69] |
Falessi M V and Zonca F 2019 Phys. Plasmas 26 022305 doi: 10.1063/1.5063874
|
[70] |
Zhang H S, Lin Z H and Holod I 2012 Phys. Rev. Lett. 109 025001 doi: 10.1103/PhysRevLett.109.025001
|
[71] |
Wang X et al 2012 Phys. Rev. E 86 045401(R doi: 10.1103/PhysRevE.86.045401
|
[72] |
Yu L M et al 2022 EPL 138 54002 doi: 10.1209/0295-5075/ac3ccf
|
[73] |
Todo Y and Sato T 1998 Phys. Plasmas 5 1321 doi: 10.1063/1.872791
|
[74] |
Fu G Y et al 2006 Phys. Plasmas 13 052517 doi: 10.1063/1.2203604
|
[75] |
Zhu J, Ma Z W and Wang S 2016 Phys. Plasmas 23 122506 doi: 10.1063/1.4971806
|
[76] |
Chen L, White R B and Rosenbluth M N 1984 Phys. Rev. Lett. 52 1122 doi: 10.1103/PhysRevLett.52.1122
|
[77] |
Zonca F, et al 2005 Nucl. Fusion 45 477 doi: 10.1088/0029-5515/45/6/009
|
[78] |
Tobias B J et al 2011 Phys. Rev. Lett. 106 075003 doi: 10.1103/PhysRevLett.106.075003
|
[79] |
Briguglio S, Zonca F and Vlad G 1998 Phys. Plasmas 5 3287 doi: 10.1063/1.872997
|
[80] |
Vlad G, Zonca F and Briguglio S 1999 Riv. Nuovo Cim. 22 1 doi: 10.1007/BF02874568
|
[81] |
Izzo R et al 1983 Phys. Fluids 26 2240 doi: 10.1063/1.864379
|
[82] |
Breizman B N et al 2005 Phys. Plasmas 12 112506 doi: 10.1063/1.2130692
|
[83] |
Hahm T S, Lee W W and Brizard A 1988 Phys. Fluids 31 1940 doi: 10.1063/1.866641
|
[84] |
Chew G F, Goldberger M L and Low F E 1956 Proc. Roy. Soc. London Ser. A Math. Phys. Sci. 236 112 doi: 10.1098/rspa.1956.0116
|
[85] |
Albanese R et al 2017 Fusion Eng. Des. 122 274 doi: 10.1016/j.fusengdes.2016.12.030
|
[86] |
Stix T H 1972 Plasma Phys. 14 367 doi: 10.1088/0032-1028/14/4/002
|
[87] |
Pizzuto A et al 2010 Nucl. Fusion 50 095005 doi: 10.1088/0029-5515/50/9/095005
|
[88] |
Vlad G et al 2013 Nucl. Fusion 53 083008 doi: 10.1088/0029-5515/53/8/083008
|
[89] |
Spong D A 2013 Nucl. Fusion 53 053008 doi: 10.1088/0029-5515/53/5/053008
|
[90] |
Yang Y R et al 2020 Nucl. Fusion 60 106012 doi: 10.1088/1741-4326/aba673
|
[91] |
Briguglio S et al 2014 Phys. Plasmas 21 112301 doi: 10.1063/1.4901028
|
[92] |
Zonca F et al 2007 Nucl. Fusion 47 1588 doi: 10.1088/0029-5515/47/11/022
|
[93] |
Fu G Y and Cheng C Z 1992 Phys. Fluids B 4 3722 doi: 10.1063/1.860328
|
[94] |
Chen L 1988 Theory of Fusion Plasmas edited by J. Vaclavik and F. Troyon and E. Sindoni, Association EURATOM, Bologna, Italy, p 327
|
[95] |
Fu G Y and Van Dam J W 1989 Phys. Fluids B 1 1949 doi: 10.1063/1.859057
|
[96] |
Pinches S D et al 2015 Phys. Plasmas 22 021807 doi: 10.1063/1.4908551
|
[97] |
Lauber P 2015 Plasma Phys. Control. Fusion 57 054011 doi: 10.1088/0741-3335/57/5/054011
|
[98] |
Schneller M, Lauber P and Briguglio S 2016 Plasma Phys. Control. Fusion 58 014019 doi: 10.1088/0741-3335/58/1/014019
|
[99] |
Rodrigues P et al 2015 Nucl. Fusion 55 083003 doi: 10.1088/0029-5515/55/8/083003
|
[100] |
Fitzgerald M et al 2016 Nucl. Fusion 56 112010 doi: 10.1088/0029-5515/56/11/112010
|
[101] |
White R B 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 2200 doi: 10.1016/j.cnsns.2011.02.013
|
[102] |
Briguglio S et al 2017 Nucl. Fusion 57 072001 doi: 10.1088/1741-4326/aa515b
|
[103] |
Wang X et al 2016 Phys. Plasmas 23 012514 doi: 10.1063/1.4940785
|
[104] |
Hsu C T and Sigmar D J 1992 Phys. Fluids B 4 1492 doi: 10.1063/1.860060
|
[105] |
White R B et al 1983 Phys. Fluids 26 2958 doi: 10.1063/1.864060
|
[106] |
Heidbrink W W and White R B 2020 Phys. Plasmas 27 030901 doi: 10.1063/1.5136237
|
[107] |
Berk H L, Breizman B N and Pekker M 1996 Phys. Rev. Lett. 76 1256 doi: 10.1103/PhysRevLett.76.1256
|
[108] |
Zonca F et al 2021 J. Phys.: Conf. Ser. 1785 012005 doi: 10.1088/1742-6596/1785/1/012005
|
[109] |
Du X D et al 2021 Phys. Rev. Lett. 127 235002 doi: 10.1103/PhysRevLett.127.235002
|
[110] |
Shinohara K et al 2001 Nucl. Fusion 41 603 doi: 10.1088/0029-5515/41/5/313
|
[111] |
Shinohara K et al 2004 Plasma Phys. Control. Fusion 46 S31 doi: 10.1088/0741-3335/46/7/S03
|
[112] |
Sharapov S E et al 2006 Nucl. Fusion 46 S868 doi: 10.1088/0029-5515/46/10/S02
|
[113] |
Bierwage A, White R B and Duarte V N 2021 Plasma Fusion Res. 16 1403087 doi: 10.1585/pfr.16.1403087
|
[114] |
Wang X et al 2022 Phys. Plasmas 29 032512 doi: 10.1063/5.0080785
|
[115] |
Briguglio S et al 2007 Phys. Plasmas 14 055904 doi: 10.1063/1.2710208
|
[116] |
Bierwage A et al 2013 Nucl. Fusion 53 073007 doi: 10.1088/0029-5515/53/7/073007
|
[117] |
White R B et al 2010 Phys. Plasmas 17 056107 doi: 10.1063/1.3327208
|
[118] |
White R B et al 2010 Plasma Phys. Control. Fusion 52 045012 doi: 10.1088/0741-3335/52/4/045012
|
[119] |
Falessi M V et al 2023 New J. Phys. 25 123035 doi: 10.1088/1367-2630/ad127d
|
[120] |
Hahm T S and Chen L 1995 Phys. Rev. Lett. 74 266 doi: 10.1103/PhysRevLett.74.266
|
[121] |
Chen L et al 1998 Plasma Phys. Control. Fusion 40 1823 doi: 10.1088/0741-3335/40/11/001
|
[122] |
Zonca F et al 1995 Phys. Rev. Lett. 74 698 doi: 10.1103/PhysRevLett.74.698
|
[123] |
Qiu Z Y, Chen L and Zonca F 2013 EPL 101 35001 doi: 10.1209/0295-5075/101/35001
|
[124] |
Qiu Z Y, Chen L and Zonca F 2016 Phys. Plasmas 23 090702 doi: 10.1063/1.4962997
|
[125] |
Qiu Z Y, Chen L and Zonca F 2019 Nucl. Fusion 59 066024 doi: 10.1088/1741-4326/ab1693
|
[126] |
Qiu Z Y et al 2019 Nucl. Fusion 59 066031 doi: 10.1088/1741-4326/ab1285
|
[127] |
Wei S Z et al 2019 Phys. Plasmas 26 074501 doi: 10.1063/1.5100597
|
[128] |
Qiu Z Y, Chen L and Zonca F 2023 Rev. Mod. Plasma Phys. 7 28 doi: 10.1007/s41614-023-00130-7
|
[129] |
Chen L, Lin Z H and White R 2000 Phys. Plasmas 7 3129 doi: 10.1063/1.874222
|
[130] |
Chen L and Hasegawa A 1991 J. Geophys. Res. 96 1503 doi: 10.1029/90JA02346
|
[131] |
Chen L et al 2001 Nucl. Fusion 41 747 doi: 10.1088/0029-5515/41/6/310
|
[132] |
Chen L, Qiu Z Y and Zonca F 2022 Phys. Plasmas 29 050701 doi: 10.1063/5.0091057
|
[133] |
Winsor N, Johnson J L and Dawson J M 1968 Phys. Fluids 11 2448 doi: 10.1063/1.1691835
|
[134] |
Zonca F and Chen L 2008 EPL 83 35001 doi: 10.1209/0295-5075/83/35001
|
[135] |
Qiu Z Y, Chen L and Zonca F 2018 Plasma Sci. Technol. 20 094004 doi: 10.1088/2058-6272/aab4f0
|
[136] |
Conway G D, Smolyakov A I and Ido T 2022 Nucl. Fusion 62 013001 doi: 10.1088/1741-4326/ac0dd1
|
[137] |
Heidbrink W W et al 2021 Nucl. Fusion 61 016029 doi: 10.1088/1741-4326/abc4c3
|
[138] |
Russell D A, Hanson J D and Ott E 1980 Phys. Rev. Lett. 45 1175 doi: 10.1103/PhysRevLett.45.1175
|
[139] |
Qiu Z Y, Chen L and Zonca F 2016 Nucl. Fusion 56 106013 doi: 10.1088/0029-5515/56/10/106013
|
[140] |
Qiu Z Y, Chen L and Zonca F 2017 Nucl. Fusion 57 056017 doi: 10.1088/1741-4326/aa6413
|
[141] |
Guo Z H, Chen L and Zonca F 2009 Phys. Rev. Lett. 103 055002 doi: 10.1103/PhysRevLett.103.055002
|
[142] |
Chen N F et al 2022 Plasma Phys. Control. Fusion 64 015003 doi: 10.1088/1361-6587/ac35a6
|
[143] |
Todo Y, Berk H L and Breizman B N 2010 Nucl. Fusion 50 084016 doi: 10.1088/0029-5515/50/8/084016
|
[144] |
Biancalani A et al 2021 Plasma Phys. Control. Fusion 63 065009 doi: 10.1088/1361-6587/abf256
|
[145] |
Liu P et al 2022 Phys. Rev. Lett. 128 185001 doi: 10.1103/PhysRevLett.128.185001
|
[146] |
Wang Y H et al 2022 J. Plasma Phys. 88 895880601 doi: 10.1017/S0022377822001179
|
[147] |
Chirikov B V 1979 Phys. Rep. 52 263 doi: 10.1016/0370-1573(79)90023-1
|
[148] |
Zhang W L, Lin Z H and Chen L 2008 Phys. Rev. Lett. 101 095001 doi: 10.1103/PhysRevLett.101.095001
|
[149] |
Collins C S et al 2016 Phys. Rev. Lett. 116 095001 doi: 10.1103/PhysRevLett.116.095001
|
[150] |
Chen L, Qiu Z Y and Zonca F 2022 Nucl. Fusion 62 094001 doi: 10.1088/1741-4326/ac7cf9
|
[151] |
Chen L, Qiu Z Y and Zonca F 2023 Nucl. Fusion 63 106016 doi: 10.1088/1741-4326/acf230
|
[152] |
Zonca F et al 2006 Plasma Phys. Control. Fusion 48 B15 doi: 10.1088/0741-3335/48/12B/S02
|
[153] |
Chen L and Zonca F 2007 Nucl. Fusion 47 S727 doi: 10.1088/0029-5515/47/10/S20
|
[154] |
Mazzi S et al 2022 Nat. Phys. 18 776 doi: 10.1038/s41567-022-01626-8
|
[1] | Zhiwen CHENG, Guangyu WEI, Lei YE, Zhiyong QIU. Nonlinear saturation of reversed shear Alfvén eigenmode via high-frequency quasi-mode generation[J]. Plasma Science and Technology, 2025, 27(1): 015101. DOI: 10.1088/2058-6272/ad8814 |
[2] | Haowei ZHANG, Zhiwei MA. Validation of the current and pressure coupling schemes with nonlinear simulations of TAE and analysis on the linear stability of tearing mode in the presence of energetic particles[J]. Plasma Science and Technology, 2023, 25(4): 045105. DOI: 10.1088/2058-6272/aca6c0 |
[3] | Jixing YANG, Guoyong FU, Wei SHEN, Minyou YE. Linear hybrid simulations of low-frequency fishbone instability driven by energetic passing particles in tokamak plasmas[J]. Plasma Science and Technology, 2022, 24(6): 065101. DOI: 10.1088/2058-6272/ac5972 |
[4] | Guo MENG, Philipp LAUBER, Xin WANG, Zhixin LU. Mode structure symmetry breaking of reversed shear Alfvén eigenmodes and its impact on the generation of parallel velocity asymmetries in energetic particle distribution[J]. Plasma Science and Technology, 2022, 24(2): 025101. DOI: 10.1088/2058-6272/ac3d7b |
[5] | Weidong ZHAO (赵卫东), Chao HUA (华超), Xiaoyin ZHANG (张潇尹), Xiaolong QI (戚小龙), Kiatsiriroat TANONGKIAT, Junfeng WANG (王军锋). Study of selective hydrogenation of biodiesel in a DBD plasma reactor[J]. Plasma Science and Technology, 2021, 23(9): 95506-095506. DOI: 10.1088/2058-6272/ac0812 |
[6] | Tao ZHANG (张涛), Haiqing LIU (刘海庆), Guoqiang LI (李国强), Long ZENG (曾龙), Yao YANG (杨曜), Tingfeng MING (明廷凤), Xiang GAO (高翔), Hui LIAN (连辉), Kai LI (李凯), Yong LIU (刘永), Yingying LI (李颖颖), Tonghui SHI (石同辉), Xiang HAN (韩翔), the EAST team. Experimental observation of reverse- sheared Alfvén eigenmodes (RSAEs) in ELMy H-mode plasma on the EAST tokamak[J]. Plasma Science and Technology, 2018, 20(11): 115101. DOI: 10.1088/2058-6272/aac9b5 |
[7] | Lu WANG (王璐), Shuitao PENG (彭水涛), P H DIAMOND. Gyrokinetic theory of turbulent acceleration and momentum conservation in tokamak plasmas[J]. Plasma Science and Technology, 2018, 20(7): 74004-074004. DOI: 10.1088/2058-6272/aab5bc |
[8] | WANG Songbai (王松柏), LEI Guangjiu (雷光玖), BI Zhenhua (毕振华), H. GHOMI, YANG Size (杨思泽), LIU Dongping (刘东平). Saturation Ion Current Densities in Inductively Coupled Hydrogen Plasma Produced by Large-Power Radio Frequency Generator[J]. Plasma Science and Technology, 2016, 18(9): 907-911. DOI: 10.1088/1009-0630/18/9/06 |
[9] | ZHANG Huasen (张桦森), LIN Zhihong (林志宏). Nonlinear Generation of Zonal Fields by the Beta-Induced Alfvén Eigenmode in Tokamak[J]. Plasma Science and Technology, 2013, 15(10): 969-973. DOI: 10.1088/1009-0630/15/10/02 |
[10] | QIU Zhiyong, Fulvio ZONCA, CHEN Liu. Kinetic Theories of Geodesic Acoustic Modes: Radial Structure, Linear Excitation by Energetic Particles and Nonlinear Saturation[J]. Plasma Science and Technology, 2011, 13(3): 257-266. |
1. | Lan, T., Chen, C., Xiao, C. et al. Preliminary compact torus injection experiments on the Keda Torus eXperiment reversed field pinch. Plasma Science and Technology, 2024, 26(10): 105102. DOI:10.1088/2058-6272/ad60f4 | |
2. | Li, Y.-H., Ye, Y., Tang, L.-H. et al. Development of high current and refrequency pulse supply power system for compact torus core fueling device | [紧凑环芯部加料装置用大电流高重频脉冲电源系统的研制]. Hejubian Yu Dengliziti Wuli/Nuclear Fusion and Plasma Physics, 2024, 44(3): 304-311. DOI:10.16568/j.0254-6086.202403009 | |
3. | Tan, M., Ye, Y., Kong, D. et al. Design and operation of a repetitive compact torus injector for the EAST tokamak. Fusion Engineering and Design, 2024. DOI:10.1016/j.fusengdes.2024.114559 | |
4. | Dong, Q., Zhang, J., Lan, T. et al. Effects of vacuum magnetic field region on the compact torus trajectory in a tokamak plasma. Plasma Science and Technology, 2024, 26(7): 075102. DOI:10.1088/2058-6272/ad36aa | |
5. | Zhao, H., Zhang, Y., Yang, L. et al. Method and application analysis of remote magnetic controlling for space target | [空间目标远程磁控方法及应用分析]. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2024, 46(1): 261-270. DOI:10.12305/j.issn.1001-506X.2024.01.30 | |
6. | Huang, Y.Q., Kong, D.F., Xia, T.Y. et al. Theory and simulation of the force-free equilibria in the EAST-CTI. Plasma Physics and Controlled Fusion, 2023, 65(9): 095016. DOI:10.1088/1361-6587/ace992 | |
7. | Kong, D., Zhuang, G., Lan, T. et al. Design and platform testing of the compact torus central fueling device for the EAST tokamak. Plasma Science and Technology, 2023, 25(6): 065601. DOI:10.1088/2058-6272/acaf61 | |
8. | Zhao, H., Zhang, Y., Yang, L. et al. Plasma Ring Transportation Feature Parameters Optimization and Dynamics Analysis with Multiobjective Particle Swarm Optimization. 2022. DOI:10.1109/ICMRA56206.2022.10145645 |
Device | Host system | Cables | Ignitrons | Capacitors |
Resistance ( |
7.42 | 0.09 | Ignored | 1.94 |
Inductance ( |
213.27 | 40.12 | 5 | Ignored |
Methods | |||
The NRA method | |||
The RLF method |
Parameters | The NRA method | The RLF method |
9.52 | 9.47 | |
240.71 | 300.97 | |
100 | 100 | |
70 | 70 | |
35 | 35 |