Advanced Search+
Lu WANG (王璐), Shuitao PENG (彭水涛), P H DIAMOND. Gyrokinetic theory of turbulent acceleration and momentum conservation in tokamak plasmas[J]. Plasma Science and Technology, 2018, 20(7): 74004-074004. DOI: 10.1088/2058-6272/aab5bc
Citation: Lu WANG (王璐), Shuitao PENG (彭水涛), P H DIAMOND. Gyrokinetic theory of turbulent acceleration and momentum conservation in tokamak plasmas[J]. Plasma Science and Technology, 2018, 20(7): 74004-074004. DOI: 10.1088/2058-6272/aab5bc

Gyrokinetic theory of turbulent acceleration and momentum conservation in tokamak plasmas

Funds: These works are supported by National Natural Science Foundation of China (NSFC) under Contract Nos. 11675059 and 11305071, and the Ministry of Science and Technology of China under Contract No. 2013GB112002.
More Information
  • Received Date: January 06, 2018
  • Understanding the generation of intrinsic rotation in tokamak plasmas is crucial for future fusion reactors such as ITER. We proposed a new mechanism named turbulent acceleration for the origin of the intrinsic parallel rotation based on gyrokinetic theory. The turbulent acceleration acts as a local source or sink of parallel rotation, i.e., volume force, which is different from the divergence of residual stress, i.e., surface force. However, the order of magnitude of turbulent acceleration can be comparable to that of the divergence of residual stress for electrostatic ion temperature gradient (ITG) turbulence. A possible theoretical explanation for the experimental observation of electron cyclotron heating induced decrease of co-current rotation was also proposed via comparison between the turbulent acceleration driven by ITG turbulence and that driven by collisionless trapped electron mode turbulence. We also extended this theory to electromagnetic ITG turbulence and investigated the electromagnetic effects on intrinsic parallel rotation drive. Finally, we demonstrated that the presence of turbulent acceleration does not conflict with momentum conservation.
  • [1]
    Baldwin M P et al 2007 Science 315 467
    [2]
    Hughes D W et al 2007 The Solar Tachocline (Cambridge: Cambridge University Press)
    [3]
    Rice J E et al 2007 Nucl. Fusion 47 1618
    [4]
    Bondeson A and Ward J D 1994 Phys. Rev. Lett. 72 2709
    [5]
    Betti R and Freidberg J P 1995 Phys. Rev. Lett. 74 2949
    [6]
    Politzer P A et al 2008 Nucl. Fusion 48 075001
    [7]
    Biglari H, Diamond P H and Terry P W 1990 Phys. Fluids B 2 1
    [8]
    Hahm T S and Burrell K H 1995 Phys. Plasmas 2 1648
    [9]
    Terry P W 2000 Rev. Mod. Phys. 72 109
    [10]
    Rastovic D 2007 J. Fusion Energy 26 337
    [11]
    Rastovic D 2012 J. Mod. Phys. 3 1858
    [12]
    Rastovic D 2015 J. Fusion Energy 34 207
    [13]
    Wang L and Diamond P H 2013 Phys. Rev. Lett. 110 265006
    [14]
    Wang L, Peng S and Diamond P H 2016 Phys. Plasmas 23 042309
    [15]
    Peng S, Wang L and Pan Y 2017 Nucl. Fusion 57 036003
    [16]
    Peng S and Wang L 2017 Phys. Plasmas 24 012304
    [17]
    Hahm T S 1988 Phys. Fluids 31 2670
    [18]
    Diamond P H et al 2013 Nucl. Fusion 53 104019
    [19]
    Gürcan ? D et al 2010 Phys. Plasmas 17 112309
    [20]
    Shi Y J et al 2016 Nucl. Fusion 56 016014
    [21]
    Shi Y J et al 2013 Nucl. Fusion 53 113031
    [22]
    McDermott R M et al 2011 Plasma Phys. Control. Fusion 53 124013
    [23]
    Bortolon A et al 2006 Phys. Rev. Lett. 97 235003
    [24]
    Rice J E et al 2011 Nucl. Fusion 51 083005
    [25]
    Reinke M L et al 2013 Plasma Phys. Control. Fusion 55 012001
    [26]
    Ding W X et al 2013 Phys. Rev. Lett. 110 065008
    [27]
    Prager S C 1999 Plasma Phys. Control. Fusion 41 A129
    [28]
    Lee G S, Diamond P H and An Z G 1989 Phys. Fluids B 1 99
    [29]
    Kaang H H et al 2016 Phys. Plasmas 23 052501
    [30]
    Holod I, Fulton D and Lin Z 2015 Nucl. Fusion 55 0930205
  • Related Articles

    [1]Ruihuan TIAN, Yonggan LIANG, Shuji HAO, Jie FENG, Xiaonan JIANG, Hui LI, Chengxun YUAN, Jian WU. Simulation of DC glow discharge plasma with free-moving dust particles in the radial direction[J]. Plasma Science and Technology, 2023, 25(9): 095401. DOI: 10.1088/2058-6272/acc44a
    [2]Zheng LI (李铮), Zhiwei SHI (史志伟), Hai DU (杜海), Qijie SUN (孙琪杰), Chenyao WEI (魏晨瑶), Xi GENG (耿玺). Analysis of flow separation control using nanosecond-pulse discharge plasma actuators on a flying wing[J]. Plasma Science and Technology, 2018, 20(11): 115504. DOI: 10.1088/2058-6272/aacaf0
    [3]Lu MA (马璐), Xiaodong WANG (王晓东), Jian ZHU (祝健), Shun KANG (康顺). Effect of DBD plasma excitation characteristics on turbulent separation over a hump model[J]. Plasma Science and Technology, 2018, 20(10): 105503. DOI: 10.1088/2058-6272/aacdf0
    [4]Yashika GHAI, Nimardeep KAUR, Kuldeep SINGH, N S SAINI. Dust acoustic shock waves in magnetized dusty plasma[J]. Plasma Science and Technology, 2018, 20(7): 74005-074005. DOI: 10.1088/2058-6272/aab491
    [5]Yunxiao CAO (曹云霄), Zhiqiang WANG (王志强), Jinjun WANG (王进君), Guofeng LI (李国锋). Study of talcum charging status in parallel plate electrostatic separator based on particle trajectory analysis[J]. Plasma Science and Technology, 2018, 20(5): 54019-054019. DOI: 10.1088/2058-6272/aaa195
    [6]Linbo GU (顾林波), Yixi CAI (蔡忆昔), Yunxi SHI (施蕴曦), Jing WANG (王静), Xiaoyu PU (濮晓宇), Jing TIAN (田晶), Runlin FAN (樊润林). Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles[J]. Plasma Science and Technology, 2017, 19(11): 115503. DOI: 10.1088/2058-6272/aa7f6e
    [7]WANG Maoyan (王茂琰), ZHANG Meng (张猛), LI Guiping (李桂萍), JIANG Baojun (姜宝钧), ZHANG Xiaochuan (张小川), XU Jun (徐军). FDTD Simulation on Terahertz Waves Propagation Through a Dusty Plasma[J]. Plasma Science and Technology, 2016, 18(8): 798-803. DOI: 10.1088/1009-0630/18/8/02
    [8]SUN Min (孙敏), YANG Bo (杨波), PENG Tianxiang (彭天祥), LEI Mingkai (雷明凯). Optimum Duty Cycle of Unsteady Plasma Aerodynamic Actuation for NACA0015 Airfoil Stall Separation Control[J]. Plasma Science and Technology, 2016, 18(6): 680-685. DOI: 10.1088/1009-0630/18/6/16
    [9]WANG Xuede(王学德), ZHAO Xiaohu(赵小虎), LI Yinghong(李应红), WU Yun(吴云), ZHAO Qin(赵勤). Effects of Plasma Aerodynamic Actuation on Corner Separation in a Highly Loaded Compressor Cascade[J]. Plasma Science and Technology, 2014, 16(3): 244-250. DOI: 10.1088/1009-0630/16/3/13
    [10]LI Yingying (李颖颖), FU Jia (符佳), SHI Yuejiang (石跃江), ZHANG Wei (张伟), SHEN Yongcai (沈永才), WANG Fudi (王福地), et al. Spectroscopic Measurement of Neutral Particle Influx Ratio on EAST[J]. Plasma Science and Technology, 2013, 15(6): 493-498. DOI: 10.1088/1009-0630/15/6/02

Catalog

    Article views (204) PDF downloads (339) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return