Processing math: 100%
Advanced Search+
Guo MENG, Philipp LAUBER, Xin WANG, Zhixin LU. Mode structure symmetry breaking of reversed shear Alfvén eigenmodes and its impact on the generation of parallel velocity asymmetries in energetic particle distribution[J]. Plasma Science and Technology, 2022, 24(2): 025101. DOI: 10.1088/2058-6272/ac3d7b
Citation: Guo MENG, Philipp LAUBER, Xin WANG, Zhixin LU. Mode structure symmetry breaking of reversed shear Alfvén eigenmodes and its impact on the generation of parallel velocity asymmetries in energetic particle distribution[J]. Plasma Science and Technology, 2022, 24(2): 025101. DOI: 10.1088/2058-6272/ac3d7b

Mode structure symmetry breaking of reversed shear Alfvén eigenmodes and its impact on the generation of parallel velocity asymmetries in energetic particle distribution

More Information
  • Corresponding author:

    Guo MENG, E-mail: guo.meng@ipp.mpg.de

    Zhixin LU, E-mail: luzhixin@ipp.mpg.de

  • Received Date: August 04, 2021
  • Revised Date: November 17, 2021
  • Accepted Date: November 24, 2021
  • Available Online: February 22, 2024
  • Published Date: January 25, 2022
  • In this work, the gyrokinetic eigenvalue code LIGKA, the drift-kinetic/MHD hybrid code HMGC and the gyrokinetic full-f code TRIMEG-GKX are employed to study the mode structure details of reversed shear Alfvén eigenmodes (RSAEs). Using the parameters from an ASDEX-Upgrade plasma, a benchmark with the three different physical models for RSAE without and with energetic particles (EPs) is carried out. Reasonable agreement has been found for the mode frequency and the growth rate. Mode structure symmetry breaking (MSSB) is observed when EPs are included, due to the EPs' non-perturbative effects. It is found that the MSSB properties are featured by a finite radial wave phase velocity, and the linear mode structure can be well described by an analytical complex Gaussian expression with complex parameters σ and s0, where s is the normalized radial coordinate. The mode structure is distorted in opposite manners when the EP drive shifted from one side of to the other side, and specifically, a non-zero average radial wave number ks with opposite signs is generated. The initial EP density profiles and the corresponding mode structures have been used as the input of HAGIS code to study the EP transport. The parallel velocity of EPs is generated in opposite directions, due to different values of the average radial wave number ks , corresponding to different initial EP density profiles with EP drive shifted away from the .

  • The authors would like to thank Dr. F. Zonca, Dr. X. Garbet and Dr. Simon Pinches for fruitful discussions, partially within the EUROFUSION Enabling Research Projects Projects 'NLED' (ER15-ENEA-03), 'NAT' (CfP-AWP17-ENR-MPG-01), 'MET' (ENR-MFE19-ENEA-05) and 'ATEP' (ENR-MOD.01.MPG). This work has been carried out within the framework of the Eurofusion Consortium and has received funding from the Euratom research and training programme 2014–2018 and 2019–2020 under grant agreement No. 633 053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

  • [1]
    Gorelenkov N N et al 2018 Nucl. Fusion 58 082016 doi: 10.1088/1741-4326/aac72b
    [2]
    Zonca F et al 2015 Plasma Phys. Control. Fusion 57 014024 doi: 10.1088/0741-3335/57/1/014024
    [3]
    Podestà M, Gorelenkova M and White R B 2014 Plasma Phys. Control. Fusion 56 055003 doi: 10.1088/0741-3335/56/5/055003
    [4]
    Bass E M and Waltz R E 2017 Phys. Plasmas 24 122302 doi: 10.1063/1.4998420
    [5]
    Zonca F et al 2015 New J. Phys. 17 013052 doi: 10.1088/1367-2630/17/1/013052
    [6]
    Chen L and Zonca F 2016 Rev. Mod. Phys. 88 015008 doi: 10.1103/RevModPhys.88.015008
    [7]
    Pinches S D et al 1998 Comput. Phys. Commun. 111 133 doi: 10.1016/S0010-4655(98)00034-4
    [8]
    Chen L, White R B and Rosenbluth M N 1984 Phys. Rev. Lett. 52 1122 doi: 10.1103/PhysRevLett.52.1122
    [9]
    Chen L and Zonca F 1995 Phys. Scr. 1995 81 doi: 10.1088/0031-8949/1995/T60/011
    [10]
    Zonca F and Chen L 1996 Phys. Plasmas 3 323 doi: 10.1063/1.871857
    [11]
    Briguglio S et al 1995 Phys. Plasmas 2 3711 doi: 10.1063/1.871071
    [12]
    Briguglio S, Zonca F and Vlad G 1998 Phys. Plasmas 5 3287 doi: 10.1063/1.872997
    [13]
    Wang Z X et al 2013 Phys. Rev. Lett. 111 145003 doi: 10.1103/PhysRevLett.111.145003
    [14]
    Tobias B J et al 2011 Phys. Rev. Lett. 106 075003 doi: 10.1103/PhysRevLett.106.075003
    [15]
    Classen I G J et al 2010 Rev. Sci. Instrum. 8110D929 doi: 10.1063/1.3483214
    [16]
    Classen I G J et al 2011 Plasma Phys. Control. Fusion 53 124018 doi: 10.1088/0741-3335/53/12/124018
    [17]
    Taimourzadeh S et al 2019 Nucl. Fusion 59 066006 doi: 10.1088/1741-4326/ab0c38
    [18]
    Ma R R, Zonca F and Chen L 2015 Phys. Plasmas 22 092501 doi: 10.1063/1.4929849
    [19]
    Lu Z X et al 2018 Nucl. Fusion 58 082021 doi: 10.1088/1741-4326/aaae0f
    [20]
    Meng G et al 2020 Nucl. Fusion 60 056017 doi: 10.1088/1741-4326/ab7e01
    [21]
    Lu Z X et al 2019 Phys. Plasmas 26 122503 doi: 10.1063/1.5124376
    [22]
    Lu Z X et al 2021 J. Comput. Phys. 440 110384 doi: 10.1016/j.jcp.2021.110384
    [23]
    Lauber P et al 2007 J. Comput. Phys. 226 447 doi: 10.1016/j.jcp.2007.04.019
    [24]
    Wang W X et al 2010 Phys. Plasmas 17 072511 doi: 10.1063/1.3459096
    [25]
    Park W et al 1999 Phys. Plasmas 6 1796 doi: 10.1063/1.873437
    [26]
    Todo Y and Sato T 1998 Phys. Plasmas 5 1321 doi: 10.1063/1.872791
    [27]
    Bierwage A et al 2018 Nat. Commun. 9 3282 doi: 10.1038/s41467-018-05779-0
    [28]
    Qin H, Tang W M and Rewoldt G 1999 Phys. Plasmas 6 2544 doi: 10.1063/1.873526
    [29]
    Lauber P and Lu Z 2018 J. Phys. Conf. Ser. 1125 012015 doi: 10.1088/1742-6596/1125/1/012015
    [30]
    Lauber P 2013 Phys. Rep. 533 33 doi: 10.1016/j.physrep.2013.07.001
    [31]
    Imbeaux F et al 2015 Nucl. Fusion 55 123006 doi: 10.1088/0029-5515/55/12/123006
    [32]
    Izzo R et al 1983 Phys. Fluids 26 2240 doi: 10.1063/1.864379
    [33]
    Wang X et al 2011 Phys. Plasmas 18 052504 doi: 10.1063/1.3587080
    [34]
    Park W et al 1992 Phys. Fluids B 4 2033 doi: 10.1063/1.860011
    [35]
    Briguglio S et al 2017 Nucl. Fusion 57 072001 doi: 10.1088/1741-4326/aa515b
    [36]
    Peeters A G et al 2011 Nucl. Fusion 51 094027 doi: 10.1088/0029-5515/51/9/094027
    [37]
    Scott B and Smirnov J 2010 Phys. Plasmas 17 112302 doi: 10.1063/1.3507920
    [38]
    Abiteboul J et al 2011 Phys. Plasmas 18 082503 doi: 10.1063/1.3620407
    [39]
    Meng G et al 2018 Nucl. Fusion 58 082017 doi: 10.1088/1741-4326/aaa918
    [40]
    McDevitt C J et al 2009 Phys. Rev. Lett. 103 205003 doi: 10.1103/PhysRevLett.103.205003
    [41]
    Garbet X et al 2013 Phys. Plasmas 20 072502 doi: 10.1063/1.4816021
    [42]
    Lauber P et al 2018 Strongly non-linear energetic particle dynamics in ASDEX upgrade scenarios with core impurity accumulation Proceedings of the 27th IAEA Fusion Energy Conference (Gandhinagar) 2018
    [43]
    Brizard A J and Hahm T S 2007 Rev. Mod. Phys. 79 421 doi: 10.1103/RevModPhys.79.421
    [44]
    White R B et al 2019 Phys. Plasmas 26 032508 doi: 10.1063/1.5088598
    [45]
    Berk H L et al 1995 Nucl. Fusion 35 1661 doi: 10.1088/0029-5515/35/12/I30
  • Related Articles

    [1]Tao WANG, Shizhao WEI, Sergio BRIGUGLIO, Gregorio VLAD, Fulvio ZONCA, Zhiyong QIU. Nonlinear dynamics of the reversed shear Alfvén eigenmode in burning plasmas[J]. Plasma Science and Technology, 2024, 26(5): 053001. DOI: 10.1088/2058-6272/ad15e0
    [2]Wenjun YANG (杨文军), Guoqiang LI (李国强), Xueyu GONG (龚学余), Xiang GAO (高翔), Xiaoe LI (李小娥). Stability analysis of Alfvén eigenmodes in China Fusion Engineering Test Reactor fully non-inductive and hybrid mode scenarios[J]. Plasma Science and Technology, 2021, 23(4): 45103-045103. DOI: 10.1088/2058-6272/abecd7
    [3]Haotian HUANG (黄浩天), Lu WANG (王璐). Effects of resonant magnetic perturbations on the loss of energetic ions in tokamak pedestal[J]. Plasma Science and Technology, 2020, 22(10): 105101. DOI: 10.1088/2058-6272/aba58c
    [4]Yunpeng ZOU (邹云鹏), Minyou YE (叶民友). Alfvén eigenmode stability analysis and energetic particle transport prediction for CFETR hybrid scenario[J]. Plasma Science and Technology, 2019, 21(9): 95104-095104. DOI: 10.1088/2058-6272/ab2110
    [5]Weikang TANG (汤炜康), Lai WEI (魏来), Zhengxiong WANG (王正汹), Jialei WANG (王佳磊), Tong LIU (刘桐), Shu ZHENG (郑殊). Effects of resonant magnetic perturbation on locked mode of neoclassical tearing modes[J]. Plasma Science and Technology, 2019, 21(6): 65103-065103. DOI: 10.1088/2058-6272/ab0a18
    [6]Tao ZHANG (张涛), Haiqing LIU (刘海庆), Guoqiang LI (李国强), Long ZENG (曾龙), Yao YANG (杨曜), Tingfeng MING (明廷凤), Xiang GAO (高翔), Hui LIAN (连辉), Kai LI (李凯), Yong LIU (刘永), Yingying LI (李颖颖), Tonghui SHI (石同辉), Xiang HAN (韩翔), the EAST team. Experimental observation of reverse- sheared Alfvén eigenmodes (RSAEs) in ELMy H-mode plasma on the EAST tokamak[J]. Plasma Science and Technology, 2018, 20(11): 115101. DOI: 10.1088/2058-6272/aac9b5
    [7]X T DING (丁玄同), W CHEN (陈伟). Review of the experiments for energetic particle physics on HL-2A[J]. Plasma Science and Technology, 2018, 20(9): 94008-094008. DOI: 10.1088/2058-6272/aad27a
    [8]Linbo GU (顾林波), Yixi CAI (蔡忆昔), Yunxi SHI (施蕴曦), Jing WANG (王静), Xiaoyu PU (濮晓宇), Jing TIAN (田晶), Runlin FAN (樊润林). Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles[J]. Plasma Science and Technology, 2017, 19(11): 115503. DOI: 10.1088/2058-6272/aa7f6e
    [9]WANG Jun (王军), HU Chundong (胡纯栋), HU Shuanghui (胡双辉), WU Bin (吴斌), et al.. Alfvén Instabilities Excited by Energetic Particles in a Parameter Regime Similar to EAST Operation[J]. Plasma Science and Technology, 2013, 15(8): 750-754. DOI: 10.1088/1009-0630/15/8/06
    [10]HU Zuquan, CHEN Yinhua, ZHENG Jugao, LIU Hao, YU Mingyang, WU Jian. Evolution of small scale density perturbations of plasma and charged aerosol particles in Polar Mesospheric Summer Echoes (PMSE) layers[J]. Plasma Science and Technology, 2011, 13(5): 550-556.
  • Cited by

    Periodical cited type(3)

    1. Liu, P., Wei, X., Lin, Z. et al. Cross-scale interaction between microturbulence and meso-scale reversed shear Alfvén eigenmodes in DIII-D plasmas. Nuclear Fusion, 2024, 64(7): 076007. DOI:10.1088/1741-4326/ad4809
    2. Liu, P., Wei, X., Lin, Z. et al. Nonlinear gyrokinetic simulations of reversed shear Alfven eigenmodes in DIII-D tokamak. Reviews of Modern Plasma Physics, 2023, 7(1): 15. DOI:10.1007/s41614-023-00117-4
    3. Liu, P., Wei, X., Lin, Z. et al. Regulation of Alfvén Eigenmodes by Microturbulence in Fusion Plasmas. Physical Review Letters, 2022, 128(18): 185001. DOI:10.1103/PhysRevLett.128.185001

    Other cited types(0)

Catalog

    Figures(11)  /  Tables(4)

    Article views (182) PDF downloads (330) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return