Advanced Search+
Lorenzo TORRISI, Letteria SILIPIGNI, Alfio TORRISI, Mariapompea CUTRONEO. Investigations on MoS2 plasma by infra-red pulsed laser irradiation in high vacuum[J]. Plasma Science and Technology, 2024, 26(7): 075507. DOI: 10.1088/2058-6272/ad3615
Citation: Lorenzo TORRISI, Letteria SILIPIGNI, Alfio TORRISI, Mariapompea CUTRONEO. Investigations on MoS2 plasma by infra-red pulsed laser irradiation in high vacuum[J]. Plasma Science and Technology, 2024, 26(7): 075507. DOI: 10.1088/2058-6272/ad3615

Investigations on MoS2 plasma by infra-red pulsed laser irradiation in high vacuum

More Information
  • Author Bio:

    Lorenzo TORRISI: lorenzo.torrisi@unime.it

  • Received Date: January 22, 2024
  • Revised Date: March 06, 2024
  • Accepted Date: March 19, 2024
  • Available Online: March 21, 2024
  • Published Date: June 26, 2024
  • MoS2 targets were irradiated by infra-red (IR) pulsed laser in a high vacuum to determine hot plasma parameters, atomic, molecular and ion emission, and angular and charge state distributions. In this way, pulsed laser deposition (PLD) of thin films on graphene oxide substrates was also realized. An Nd:YAG laser, operating at the 1064 nm wavelength with a 5 ns pulse duration and up to a 1 J pulse energy, in a single pulse or at a 10 Hz repetition rate, was employed. Ablation yield was measured as a function of the laser fluence. Plasma was characterized using different analysis techniques, such as time-of-flight measurements, quadrupole mass spectrometry and fast CCD visible imaging. The so-produced films were characterized by composition, thickness, roughness, wetting ability, and morphology. When compared to the MoS2 targets, they show a slight decrease of S with respect to Mo, due to higher ablation yield, low fusion temperature and high sublimation in vacuum. The pulsed IR laser deposited MoSx (with 1 < x < 2) films are uniform, with a thickness of about 130 nm, a roughness of about 50 nm and a higher wettability than the MoS2 targets. Some potential applications of the pulsed IR laser-deposited MoSx films are also presented and discussed.

  • The research has been realized at the CANAM (Center of Accelerators and Nuclear Analytical Methods) infrastructure LM 2015056. This publication was supported by OP RDE, MEYS, Czech Republic under the project CANAM OP (No. CZ.02.1.01/0.0/0.0/16_013/0001812) and by the Czech Science Foundation GACR (No. 23-06702S).

  • [1]
    Ermolaev G A et al 2020 npj 2D Mater. Appl. 4 21 doi: 10.1038/s41699-020-0155-x
    [2]
    Donnet C et al 1996 Tribol. Int. 29 123 doi: 10.1016/0301-679X(95)00094-K
    [3]
    Jiang J W, Park H S and Rabczuk T 2013 J. Appl. Phys. 114 064307 doi: 10.1063/1.4818414
    [4]
    Kobayashi K and Yamauchi J 1995 Phys. Rev. B 51 17085 doi: 10.1103/PhysRevB.51.17085
    [5]
    Li Y H et al 2018 npj Comput. Mater. 4 49 doi: 10.1038/s41524-018-0105-8
    [6]
    El Beqqali O et al 1997 Synth. Met. 90 165 doi: 10.1016/S0379-6779(98)80002-7
    [7]
    Radisavljevic B et al 2011 Nat. Nanotechnol. 6 147 doi: 10.1038/nnano.2010.279
    [8]
    Akinwande D, Petrone N and Hone J 2014 Nat. Commun. 5 5678 doi: 10.1038/ncomms6678
    [9]
    Lopez-Sanchez O et al 2013 Nat. Nanotechnol. 8 497 doi: 10.1038/nnano.2013.100
    [10]
    Nishimura S 2001 Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis (New York: Wiley
    [11]
    Salazar N et al 2020 Nat. Commun. 11 4369 doi: 10.1038/s41467-020-18183-4
    [12]
    Tsai M L et al 2014 ACS Nano 8 8317 doi: 10.1021/nn502776h
    [13]
    Yang X et al 2014 J. Mater. Chem. A 2 7727 doi: 10.1039/C4TA01336K
    [14]
    Li X D et al 2013 ACS Appl. Mater. Interfaces 5 8823 doi: 10.1021/am402105d
    [15]
    Murugesan S et al 2013 ACS Nano 7 8199 doi: 10.1021/nn4036624
    [16]
    Escalera-López D et al 2016 ACS Catal. 6 6008 doi: 10.1021/acscatal.6b01274
    [17]
    Loh T A J and Chua D H C 2014 ACS Appl. Mater. Interfaces 6 15966 doi: 10.1021/am503719b
    [18]
    Goswami A et al 2017 Nano Res. 10 3571 doi: 10.1007/s12274-017-1568-5
    [19]
    Ho Y T et al 2015 Phys. Status Solidi (RRL) 9 187 doi: 10.1002/pssr.201409561
    [20]
    Tumino F et al 2019 Nanoscale Adv. 1 643 doi: 10.1039/C8NA00126J
    [21]
    Siegel G et al 2015 APL Mater. 3 056103 doi: 10.1063/1.4921580
    [22]
    Borghesi M Ion acceleration: TNSA and beyond In: Gizzi L A et al Laser-Driven Sources of High Energy Particles and Radiation Cham: Springer 2019 doi: 10.1007/978-3-030-25850-4_7
    [23]
    Torrisi L et al 1988 Phys. Rev. B 38 1516 doi: 10.1103/PhysRevB.38.1516
    [24]
    Sun D et al 2021 Front. Mater. 8 717760 doi: 10.3389/fmats.2021.717760
    [25]
    Khan M F et al 2017 J. Mater. Chem. C 9 2337 doi: 10.1039/C6TC04716E
    [26]
    Sakthivel R et al 2021 J. Phys.: Conf. Ser. 2070 012131 doi: 10.1088/1742-6596/2070/1/012131
    [27]
    Torrisi L et al 2019 Vacuum 160 1 doi: 10.1016/j.vacuum.2018.11.001
    [28]
    Feldman L C and Mayer J W 1986 Fundamentals of Surface and Thin Film Analysis (New York: North-Holland
    [29]
    Torrisi L, Scolaro C and Restuccia N 2017 J. Mater. Sci.: Mater. Med. 28 63 doi: 10.1007/s10856-017-5871-1
    [30]
    Torrisi L, Borrielli A and Margarone D 2007 Nucl. Instrum. Methods Phys. Res. Sec.B: Beam Interat. Mater. At . 255 373 doi: 10.1016/j.nimb.2006.12.144
    [31]
    Dahmani F and Kerdja T 1991 Phys. Rev. A 44 2649 doi: 10.1103/PhysRevA.44.2649
    [32]
    Torrisi L et al 2008 Laser Part. Beams 26 379 doi: 10.1017/S0263034608000396
    [33]
    Torrisi L et al 2020 Contrib. Plasma Phys. 60 e201900187 doi: 10.1002/ctpp.201900187
    [34]
    Torrisi L and Torrisi A 2022 Contrib. Plasma Phys. 62 e202200037 doi: 10.1002/ctpp.202200037
    [35]
    Kandhasamy D M et al 2022 ACS Omega 7 629 doi: 10.1021/acsomega.1c05250
    [36]
    Torrisi L and Torrisi A 2023 Contrib. Plasma Phys. 63 e202300024 doi: 10.1002/ctpp.202300024
    [37]
    Tuller W N 1954 The Sulphur Data Book (New York: McGraw-Hill
    [38]
    Strazzulla G et al 1987 Icarus 70 379 doi: 10.1016/0019-1035(87)90143-6
    [39]
    NIST atomic spectra database ionization energies form. https://physics.nist.gov/PhysRefData/ASD/ionEnergy.html
    [40]
    Gurlui S and Focsa C 2011 IEEE Trans. Plasma Sci. 39 2820 doi: 10.1109/TPS.2011.2151884
    [41]
    Láska L et al 2004 Rev. Sci. Instrum. 75 1575 doi: 10.1063/1.1691520
    [42]
    Shirkov G D and Zschornack G 1996 Electron Impact Ion Sources for Charged Heavy Ions (Wiesbaden: Vieweg) https://www.las.ac.cn/front/ebook/detail?id=e2c99352d6ff421b053b6800f9c73d86
    [43]
    Donnelly G E et al 2020 Nanotechnology 31 145706 doi: 10.1088/1361-6528/ab6237
    [44]
    Li H et al 2018 J. Lumin. 199 210 doi: 10.1016/j.jlumin.2018.03.052
    [45]
    Berni M et al 2020 Thin Solid Films 709 138258 doi: 10.1016/j.tsf.2020.138258
    [46]
    Barvat A et al 2018 Mater. Today: Proc. 5 2241 doi: 10.1016/j.matpr.2017.09.225
    [47]
    Bertoldo F et al 2021 ACS Nano 15 2858 doi: 10.1021/acsnano.0c08835
    [48]
    Torrisi L et al 2022 Phys. Solid State (A) 219 2100628
    [49]
    Jiang A H et al 2021 Results Phys. 25 104278 doi: 10.1016/j.rinp.2021.104278
    [50]
    Liu Y C and Gu F X 2021 Nanoscale Adv. 3 2117 doi: 10.1039/D0NA01043J
  • Related Articles

    [1]Chengxian PAN (潘呈献), Zhengming SHI (施政铭), Qianhan HAN (韩乾翰), Ying GUO (郭颖), Jianjun SHI (石建军). Numerical simulation of atmospheric pulse-modulated radio-frequency glow discharge ignition characteristics assisted by a pulsed discharge[J]. Plasma Science and Technology, 2020, 22(1): 15405-015405. DOI: 10.1088/2058-6272/ab4d7d
    [2]Linsheng WEI(魏林生), Xin LIANG (梁馨), Yafang ZHANG (章亚芳). Numerical investigation on the effect of gas parameters on ozone generation in pulsed dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(12): 125505. DOI: 10.1088/2058-6272/aadca6
    [3]Zhoutao SUN (孙洲涛), Wen YAN (晏雯), Longfei JI (季龙飞), Zhenhua BI (毕振华), Ying SONG (宋颖), Dongping LIU (刘东平). Numerical study on an atmospheric pressure helium discharge propagating in a dielectric tube: influence of tube diameter[J]. Plasma Science and Technology, 2018, 20(8): 85401-085401. DOI: 10.1088/2058-6272/aab3d2
    [4]Gui LI (李桂), Muyang QIAN (钱沐杨), Sanqiu LIU (刘三秋), Huaying CHEN (陈华英), Chunsheng REN (任春生), Dezhen WANG (王德真). A numerical simulation study on active species production in dense methane-air plasma discharge[J]. Plasma Science and Technology, 2018, 20(1): 14004-014004. DOI: 10.1088/2058-6272/aa8f3c
    [5]Yinan WANG (王一男), Yue LIU (刘悦). Numerical study on characteristics of radiofrequency discharge at atmospheric pressure in argon with small admixtures of oxygen[J]. Plasma Science and Technology, 2017, 19(7): 75402-075402. DOI: 10.1088/2058-6272/aa6156
    [6]WANG Xiaolong (王晓龙), TAN Zhenyu (谭震宇), PAN Jie (潘杰), CHEN Xinxian (陈歆羡). Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(8): 837-843. DOI: 10.1088/1009-0630/18/8/08
    [7]WANG Yanhui (王艳辉), YE Huanhuan (叶换换), ZHANG Jiao (张佼), WANG Qi (王奇), ZHANG Jie (张杰), WANG Dezhen (王德真). Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration[J]. Plasma Science and Technology, 2016, 18(5): 478-484. DOI: 10.1088/1009-0630/18/5/06
    [8]WEI Linsheng (魏林生), PENG Bangfa (彭邦发), LI Ming (李鸣), ZHANG Yafang (章亚芳), HU Zhaoji (胡兆吉). Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air[J]. Plasma Science and Technology, 2016, 18(2): 147-156. DOI: 10.1088/1009-0630/18/2/09
    [9]LIU Yuanye (刘远野), HE Feng (何锋), ZHAO Xiaofei (赵晓菲), OUYANG Jiting (欧阳吉庭). Evolution of Striation in Pulsed Glow Discharges[J]. Plasma Science and Technology, 2016, 18(1): 30-34. DOI: 10.1088/1009-0630/18/1/06
    [10]A. K. FEROUANI, M. LEMERINI, L. MERAD, M. HOUALEF. Numerical Modelling Point-to-Plane of Negative Corona Discharge in N2 Under Non-Uniform Electric Field[J]. Plasma Science and Technology, 2015, 17(6): 469-474. DOI: 10.1088/1009-0630/17/6/06
  • Cited by

    Periodical cited type(9)

    1. Akash, R., Sarathi, R., Haddad, M. Pollution Monitoring on Polymeric Insulators Adopting Laser-Induced Breakdown Spectroscopy, Computer Vision, and Machine Learning Techniques. IEEE Transactions on Plasma Science, 2025. DOI:10.1109/TPS.2025.3539261
    2. Zhang, R., Hu, S., Ma, C. et al. Laser-induced breakdown spectroscopy (LIBS) in biomedical analysis. TrAC - Trends in Analytical Chemistry, 2024. DOI:10.1016/j.trac.2024.117992
    3. Yin, R., Qiao, Y., Wang, J. et al. Precise Testing Technology of Aluminum Based on SAF-LIBS Theory | [基于 SAF-LIBS 理论的铝精密检测技术研究]. Zhongguo Jiguang/Chinese Journal of Lasers, 2024, 51(17): 1711001. DOI:10.3788/CJL231557
    4. Xie, W., Fu, G., Xu, J. et al. Evaluation of Sample Preparation Methods for the Classification of Children’s Ca–Fe–Zn Oral Liquid by Libs. Journal of Applied Spectroscopy, 2024, 91(1): 209-217. DOI:10.1007/s10812-024-01708-w
    5. Zhou, F., Xie, W., Lin, M. et al. Rapid authentication of geographical origins of Baishao (Radix Paeoniae Alba) slices with laser-induced breakdown spectroscopy based on conventional machine learning and deep learning. Spectrochimica Acta - Part B Atomic Spectroscopy, 2024. DOI:10.1016/j.sab.2023.106852
    6. Peng, J., Lin, M., Xie, W. et al. Fast identification of geographical origins of Baishao (Radix Paeoniae Alba) using the deep fusion of LIBS spectrum and ablation image. Microchemical Journal, 2023. DOI:10.1016/j.microc.2023.109337
    7. Wei, K., Teng, G., Wang, Q. et al. Rapid Test for Adulteration of Fritillaria Thunbergii in Fritillaria Cirrhosa by Laser-Induced Breakdown Spectroscopy. Foods, 2023, 12(8): 1710. DOI:10.3390/foods12081710
    8. Wei, K., Wang, Q., Teng, G. et al. Application of Laser-Induced Breakdown Spectroscopy Combined with Chemometrics for Identification of Penicillin Manufacturers. Applied Sciences (Switzerland), 2022, 12(10): 4981. DOI:10.3390/app12104981
    9. Hu, M., Ma, F., Li, Z. et al. Sensing of Soil Organic Matter Using Laser-Induced Breakdown Spectroscopy Coupled with Optimized Self-Adaptive Calibration Strategy. Sensors, 2022, 22(4): 1488. DOI:10.3390/s22041488

    Other cited types(0)

Catalog

    Figures(12)  /  Tables(1)

    Article views (26) PDF downloads (17) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return