Citation: | Liang GUO, Xin LI, Qi LI, Sanwei LI, Xin HU, Jin LI, Bo DENG, Keli DENG, Qiangqiang WANG, Zhurong CAO, Lifei HOU, Xingsen CHE, Huabing DU, Tao XU, Xiaoan HE, Zhichao LI, Xiaohua JIANG, Wei JIANG, Chunyang ZHENG, Wudi ZHENG, Peng SONG, Yongkun DING, Dong YANG, Jiamin YANG. Studies on the motion and radiation of interior plasmas in gas-filled hohlraums with different laser entrance hole sizes[J]. Plasma Science and Technology, 2024, 26(7): 075201. DOI: 10.1088/2058-6272/ad3b9b |
An experiment on 100 kJ laser facility is performed to study the motive features and radiation properties of plasmas from different areas inside gas-filled cylindrical hohlraums. These hohlraums are designed to possess one open end and one laser entrance hole (LEH) with different diameters, which would or not result in the blocking of the LEH. An x-ray streak camera that is set at 16 degrees with respect to the hohlraum axis is applied to acquire the time-resolved x-ray images from the open end. Based on the images, we can study the evolutions of the wall plasma, corona bubble plasma and LEH plasma simultaneously through an equivalent view field of hohlraum interior. Multi-group flat response x-ray detectors are applied to measure the x-ray fluxes. In order to understand these characteristics, our two-dimensional radiation hydrodynamic code is used to simulate the experimental results. For the accuracy of reproduction, dielectronic recombination and two parameter corrections are applied in our code. Based on the comparison between experiments and simulations, we quantitatively understand the blocking process of LEH and the motion effects of other plasmas. The calibrated code is beneficial to design the gas-filled hohlraum in a nearby parameter space, especially the limit size of LEH.
This work was supported by National Natural Science Foundation of China (Nos. 12075219, 12105269 and 12175210). The authors give thanks to the operation group of BSRF and 100 kJ laser facility for their laborious work and close collaboration.
[1] |
Nuckolls J H et al 1972 Nature(London) 239 139 doi: 10.1038/239139a0
|
[2] |
Hurricane O A et al 2023 Rev. Mod. Phys. 95 025005 doi: 10.1103/RevModPhys.95.025005
|
[3] |
Moody J D et al 2014 Phys. Plasmas 21 056317 doi: 10.1063/1.4876966
|
[4] |
Lindl J D et al 2014 Phys. Plasmas 21 020501 doi: 10.1063/1.4865400
|
[5] |
Betti R et al 2016 Nature Physics 12 435 doi: 10.1038/nphys3736
|
[6] |
Guo L et al 2019 Nucl. Fusion 59 016002 doi: 10.1088/1741-4326/aae8bc
|
[7] |
Zhao H et al 2019 Matter Radiat. Extremes 4 055201 doi: 10.1063/1.5090971
|
[8] |
Delamater N D et al 1996 Phys. Plasmas 3 2022−2028 doi: 10.1063/1.871999
|
[9] |
Milovich J L et al 2016 Phys. Plasmas 23 032701 doi: 10.1063/1.4941979
|
[10] |
Doppner T et al 2015 Phys. Rev. Lett. 115 055001 doi: 10.1103/PhysRevLett.115.055001
|
[11] |
Admendt P et al 2014 Phys. Plasmas 21 112703 doi: 10.1063/1.4901195
|
[12] |
Farmer W A et al 2017 Phys. Plasmas 24 052703 doi: 10.1063/1.4983140
|
[13] |
Hall G N et al 2017 Phys. Plasmas 24 052706 doi: 10.1063/1.4983142
|
[14] |
Ralph J E et al 2018 Phys. Plasmas 25 082701 doi: 10.1063/1.5023008
|
[15] |
Lan K et al 2014 Phys. Plasmas 21 052704 doi: 10.1063/1.4878835
|
[16] |
Schneider M B et al 2015 Phys. Plasmas 22 122705 doi: 10.1063/1.4937369
|
[17] |
Dewald E L et al 2005 Phys. Rev. Lett. 95 215004 doi: 10.1103/PhysRevLett.95.215004
|
[18] |
Chen Y H et al 2022 Matter Radiat. Extremes 7 065901 doi: 10.1063/5.0102447
|
[19] |
Moore et al 2014 Phys. Plasmas 21 063303 doi: 10.1063/1.4880558
|
[20] |
MacLaren S A et al 2014 Phys. Rev. Lett. 112 105003 doi: 10.1103/PhysRevLett.112.105003
|
[21] |
Chen H et al 2020 Phys. Plasmas 27 022702 doi: 10.1063/1.5128501
|
[22] |
Pei W B 2007 Commun. Comput. Phys. 2 255
|
[23] |
Yong H et al 2013 Commun. Theor. Phys. 59 737 doi: 10.1088/0253-6102/59/6/15
|
[24] |
Yu J et al 2016 Rev. Sci. Instrum. 87 123506 doi: 10.1063/1.4971847
|
[25] |
Li Z C et al 2010 Rev. Sci. Instrum. 81 073504 doi: 10.1063/1.3460269
|
[26] |
Li Z C et al 2011 Rev. Sci. Instrum. 82 106106 doi: 10.1063/1.3657158
|
[27] |
Guo L et al 2012 Meas. Sci. Technol. 23 065902 doi: 10.1088/0957-0233/23/6/065902
|
[28] |
Guo L et al 2016 Phys. Plasmas 23 092709 doi: 10.1063/1.4962519
|
[29] |
Zou S Y et al 2013 Rev. Sci. Instrum. 84 093508 doi: 10.1063/1.4821984
|
[30] |
Zha W Y et al 2018 Rev. Sci. Instrum. 89 013501 doi: 10.1063/1.5005501
|
[31] |
Gong T et al 2019 Matter Radiat. Extremes 4 055202 doi: 10.1063/1.5092446
|
[32] |
McDonald J W et al 2004 Rev. Sci. Instrum. 75 3753 doi: 10.1063/1.1788871
|
[33] |
Huo W Y et al 2010 Phys. Plasmas 17 123114 doi: 10.1063/1.3526599
|
[34] |
Gu P J et al 1999 High Power Laser and Part. Beams 11 78
|
[35] |
Dewald D L et al 2008 Phys. Plasmas 15 072706 doi: 10.1063/1.2943700
|
[36] |
Olsen R E et al 2012 Phys. Plasmas 19 053301 doi: 10.1063/1.4704795
|
[1] | Peng DENG, Wenzhe MAO, Zhipeng CHEN, Yinan ZHOU, Peng SHI, Zhoujun YANG, Li GAO, Tao LAN, Jinlin XIE, Hong LI, Zian WEI, Adi LIU, Chu ZHOU, Weixing DING, Wandong LIU, Ge ZHUANG. The impact of toroidal mode coupling on high-density discharges in J-TEXT[J]. Plasma Science and Technology, 2024, 26(12): 125101. DOI: 10.1088/2058-6272/ad659f |
[2] | Liangkang DONG, Shaoyong CHEN, Maolin MOU, Yang LUO, Chenchen QIN, Changjian TANG. Investigation on the roles of equilibrium toroidal rotation during edge-localized mode mitigated by resonant magnetic perturbations[J]. Plasma Science and Technology, 2024, 26(1): 015102. DOI: 10.1088/2058-6272/ad0d4d |
[3] | Weikang TANG (汤炜康), Lai WEI (魏来), Zhengxiong WANG (王正汹), Jialei WANG (王佳磊), Tong LIU (刘桐), Shu ZHENG (郑殊). Effects of resonant magnetic perturbation on locked mode of neoclassical tearing modes[J]. Plasma Science and Technology, 2019, 21(6): 65103-065103. DOI: 10.1088/2058-6272/ab0a18 |
[4] | Yun YUAN (袁赟), Xingqiang LU (路兴强), Jiaqi DONG (董家齐), Zhixiong HE (何志雄), Ruibo ZHANG (张睿博), Shijia CHEN (陈诗佳), Xueyu GONG (龚学余), Yun YUAN (袁赟), Xingqiang LU (路兴强), Jiaqi DONG (董家齐), Zhixiong HE (何志雄), Ruibo ZHANG (张睿博), Shijia CHEN (陈诗佳), Xueyu GONG (龚学余). Influence of stationary driven helical current on the m=2/n=1 resistive tearing mode[J]. Plasma Science and Technology, 2019, 21(5): 55101-055101. DOI: 10.1088/2058-6272/aafdc7 |
[5] | Ding LI (李定), Wen YANG (杨文), Huishan CAI (蔡辉山). On theoretical research for nonlinear tearing mode[J]. Plasma Science and Technology, 2018, 20(9): 94002-094002. DOI: 10.1088/2058-6272/aabde4 |
[6] | Jun CHEN (陈俊), Ruiji HU (胡睿佶), Bo LYU (吕波), Fudi WANG (王福地), Xiaojie WANG (王晓洁), Handong XU (徐旵东), Yingying LI (李颖颖), Jia FU (符佳), Xianghui YIN (尹相辉), Dajun WU (吴大俊), Fukun LIU (刘甫坤), Qing ZANG (臧庆), Haiqing LIU (刘海庆), Yuejiang SHI (石跃江), Shifeng MAO (毛世峰), Yi YU (余羿), Baonian WAN (万宝年), Minyou YE (叶民友), Yongcai SHEN (沈永才), EAST team. Observation and characterization of the effect of electron cyclotron waves on toroidal rotation in EAST L-mode discharges[J]. Plasma Science and Technology, 2017, 19(10): 105101. DOI: 10.1088/2058-6272/aa7cec |
[7] | PAN Xiayun (潘夏云), WANG Fudi (王福地), ZHANG Xinjun (张新军), LYU Bo (吕波), CHEN Jun (陈俊), LI Yingying (李颖颖), FU Jia (符佳), SHI Yuejiang (石跃江), YU Yi (余羿), YE Minyou (叶民友), WAN Baonian (万宝年). Observation of Central Toroidal Rotation Induced by ICRF on EAST[J]. Plasma Science and Technology, 2016, 18(2): 114-119. DOI: 10.1088/1009-0630/18/2/03 |
[8] | WU Jing (吴静), YAO Lieming (姚列明), ZHU Jianhua(朱建华), HAN Xiaoyu (韩晓玉), LI Wenzhu(李文柱). Profile Measurement of Ion Temperature and Toroidal Rotation Velocity with Charge Exchange Recombination Spectroscopy Diagnostics in the HL-2A Tokamak[J]. Plasma Science and Technology, 2012, 14(11): 953-957. DOI: 10.1088/1009-0630/14/11/02 |
[9] | LI Li(李莉), LIU Yue (刘悦), XU Xinyang(许欣洋), XIA Xinnian(夏新念). The Effect of Equilibrium Current Profiles on MHD Instabilities in Tokamaks[J]. Plasma Science and Technology, 2012, 14(1): 14-19. DOI: 10.1088/1009-0630/14/1/04 |
[10] | HE Zhixiong, DONG Jiaqi, HE Hongda, JIANG Haibin, GAO Zhe, ZHANG Jinhua. MHD Equilibrium Configuration Reconstructions for HL-2A Tokamak[J]. Plasma Science and Technology, 2011, 13(4): 424-430. |
1. | Salewski, M., Spong, D.A., Aleynikov, P. et al. Energetic particle physics: Chapter 7 of the special issue: on the path to tokamak burning plasma operation. Nuclear Fusion, 2025, 65(4): 043002. DOI:10.1088/1741-4326/adb763 |
2. | Zhang, L.L., Jhang, H.G., Kang, J.S. et al. M3D-K simulations of beam-driven instabilities in an energetic particle dominant KSTAR discharge. Nuclear Fusion, 2024, 64(7): 076001. DOI:10.1088/1741-4326/ad4535 |
3. | Wang, H., Jiang, S., Liu, T. et al. Effects of diamagnetic drift on nonlinear interaction between multi-helicity neoclassical tearing modes. Chinese Physics B, 2024, 33(6): 065202. DOI:10.1088/1674-1056/ad24d3 |
4. | Ren, Z., Wang, F., Cai, H. et al. Influence of toroidal rotation on nonlinear evolution of tearing mode in tokamak plasmas. Plasma Physics and Controlled Fusion, 2023, 65(1): 015007. DOI:10.1088/1361-6587/aca4f4 |
5. | Cai, H., Li, D. Recent progress in the interaction between energetic particles and tearing modes. National Science Review, 2022, 9(11): nwac019. DOI:10.1093/nsr/nwac019 |
6. | Jiang, S., Tang, W., Wei, L. et al. Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas. Plasma Science and Technology, 2022, 24(5): 055101. DOI:10.1088/2058-6272/ac500b |
7. | Liu, T., Wei, L., Wang, F. et al. Coriolis Force Effect on Suppression of Neo-Classical Tearing Mode Triggered Explosive Burst in Reversed Magnetic Shear Tokamak Plasmas. Chinese Physics Letters, 2021, 38(4): 045204. DOI:10.1088/0256-307X/38/4/045204 |