Citation: | Pengying JIA, Guoxin HAN, Xiupin DONG, Kaiyue WU, Junxia RAN, Xuexia PANG, Xuexue ZHANG, Jiacun WU, Xuechen LI. Influence of bias voltage and oxygen addition on the discharge aspects of a diffuse argon plume in an atmospheric pressure plasma jet[J]. Plasma Science and Technology, 2024, 26(12): 125402. DOI: 10.1088/2058-6272/ad73ab |
A remote plasma, also referred to as a plasma plume (diffuse or filamentary), is normally formed downstream of an atmospheric pressure plasma jet. In this study, a diffuse plume is formed by increasing the bias voltage (Ub) applied to the downstream electrode of an argon plasma jet excited by a negatively pulsed voltage. The results indicate that the plume is filamentary when Ub is low, which transits to the diffuse plume with increasing Ub. The discharge initiated at the rising edge of the pulsed voltage is attributed to the diffuse plume, while that at the falling edge contributes to the filament in the plume. For the diffuse plume, the discharge intensity decreases with the increasing oxygen content (Co). Fast photography reveals that the diffuse plume results from a negative streamer, which has a dark region near the nozzle with Co = 0%. However, the dark region is absent with Co = 0.5%. From the optical emission spectrum, the electron density, electron excitation temperature, gas temperature, and oxygen atom concentration are investigated.
This work was supported by National Natural Science Foundation of China (Nos. 12375250, 11875121, 51977057 and 11805013), the Natural Science Foundation of Hebei Province (Nos. A2020201025 and A2022201036), Hebei Province Optoelectronic Information Materials Laboratory Performance Subsidy Fund Project (No. 22567634H), Funds for Distinguished Young Scientists of Hebei Province (No. A2012201045), the Natural Science Interdisciplinary Research Program of Hebei University (Nos. DXK201908 and DXK202011), and the Post-graduate’s Innovation Fund Project of Hebei University (No. HBU2022bs004).
[1] |
Li X C et al 2019 Plasma Sources Sci. Technol. 28 055006 doi: 10.1088/1361-6595/aaffff
|
[2] |
Chen M et al 2024 Appl. Phys. Lett. 124 214102 doi: 10.1063/5.0209280
|
[3] |
Nguyen D B et al 2023 Plasma Chem. Plasma Process. 43 1475 doi: 10.1007/s11090-023-10404-0
|
[4] |
Cui X L et al 2018 Vacuum 151 15 doi: 10.1016/j.vacuum.2018.01.042
|
[5] |
Bedrouni F et al 2023 Phys. Scr. 98 085608 doi: 10.1088/1402-4896/ace856
|
[6] |
Babaeva N Y and Naidis G V 2018 Trends Biotechnol. 36 603 doi: 10.1016/j.tibtech.2017.06.017
|
[7] |
Athanasopoulos D et al 2018 Appl. Phys. Lett. 112 213703 doi: 10.1063/1.5027901
|
[8] |
Fang J H et al 2015 Int. J. Hydrog. Energy 40 6165 doi: 10.1016/j.ijhydene.2015.02.134
|
[9] |
Chen G L et al 2021 ACS Appl. Mater. Interfaces 13 45566 doi: 10.1021/acsami.1c13480
|
[10] |
Chen Z Y et al 2018 J. Phys. D: Appl. Phys. 51 325201 doi: 10.1088/1361-6463/aad0eb
|
[11] |
Xu H et al 2018 Phys. Plasmas 25 13520 doi: 10.1063/1.5016510
|
[12] |
Zhang J et al 2022 Appl. Phys. Lett. 120 264102 doi: 10.1063/5.0096605
|
[13] |
Guo Y T et al 2021 Appl. Phys. Lett. 119 090601 doi: 10.1063/5.0064020
|
[14] |
Ghimire B et al 2022 J. Phys. D: Appl. Phys. 55 125207 doi: 10.1088/1361-6463/ac43d9
|
[15] |
Das S et al 2024 Phys. Scr. 99 025601 doi: 10.1088/1402-4896/ad1869
|
[16] |
Lu X, Laroussi M and Puech V 2012 Plasma Sources Sci. Technol. 21 034005 doi: 10.1088/0963-0252/21/3/034005
|
[17] |
Deepak G D 2022 Eur. Phys. J. Appl. Phys. 97 39 doi: 10.1051/epjap/2022210275
|
[18] |
Jia P Y et al 2023 IEEE Trans. Radiat. Plasma Med. Sci. 7 203 doi: 10.1109/TRPMS.2022.3195886
|
[19] |
Jia P Y et al 2023 Chin. Phys. B 32 085202 doi: 10.1088/1674-1056/acbde9
|
[20] |
Deepak G D, Joshi N K and Prakash R 2018 AIP Adv. 8 055321 doi: 10.1063/1.5023072
|
[21] |
Deepak G D et al 2016 Laser Part. Beams 34 615 doi: 10.1017/S0263034616000501
|
[22] |
Deepak G D et al 2017 Rev. Sci. Instrum. 88 013505 doi: 10.1063/1.4974101
|
[23] |
Chen J Y et al 2022 Chin. Phys. B 31 065205 doi: 10.1088/1674-1056/ac601a
|
[24] |
Tsai T C and Staack D 2011 Plasma Process. Polym. 8 523 doi: 10.1002/ppap.201000171
|
[25] |
Wu K Y et al 2022 Plasma Process. Polym. 19 2200003 doi: 10.1002/ppap.202200003
|
[26] |
Khatami S et al 2023 Plasma Chem. Plasma Process. 43 1131 doi: 10.1007/s11090-023-10354-7
|
[27] |
Li X C et al 2020 Plasma Sources Sci. Technol. 29 065015 doi: 10.1088/1361-6595/ab6362
|
[28] |
Wu J C et al 2021 Phys. Plasmas 28 073501 doi: 10.1063/5.0047988
|
[29] |
Wu J C et al 2023 Plasma Process. Polym. 20 2200188 doi: 10.1002/ppap.202200188
|
[30] |
Wu S et al 2013 J. Appl. Phys. 114 043301 doi: 10.1063/1.4816318
|
[31] |
Kloc P et al 2010 J. Phys. D: Appl. Phys. 43 345205 doi: 10.1088/0022-3727/43/34/345205
|
[32] |
Urabe K, Yamada K and Sakai O 2011 Jpn. J. Appl. Phys. 50 116002 doi: 10.1143/JJAP.50.116002
|
[33] |
Xia W J et al 2018 Plasma Sources Sci. Technol. 27 055001 doi: 10.1088/1361-6595/aabdc1
|
[34] |
Li J et al 2017 J. Appl. Phys. 122 013301 doi: 10.1063/1.4989975
|
[35] |
Zhao N et al 2022 J. Phys. D: Appl. Phys. 55 015203 doi: 10.1088/1361-6463/ac27d5
|
[36] |
Ghimire B et al 2018 Appl. Phys. Lett. 113 194101 doi: 10.1063/1.5055592
|
[37] |
Brisset A et al 2021 J. Phys. D: Appl. Phys. 54 285201 doi: 10.1088/1361-6463/abefec
|
[38] |
Stepanova O et al 2020 Jpn. J. Appl. Phys. 59 SHHC03 doi: 10.35848/1347-4065/ab75b4
|
[39] |
Hofmann S, Sobota A and Bruggeman P 2012 IEEE Trans. Plasma Sci. 40 2888 doi: 10.1109/TPS.2012.2211621
|
[40] |
Lu X P and Laroussi M 2006 J. Appl. Phys. 100 063302 doi: 10.1063/1.2349475
|
[41] |
Jia P Y et al 2021 Plasma Sources Sci. Technol. 30 095021 doi: 10.1088/1361-6595/abde51
|
[42] |
Karakas E and Laroussi M 2010 J. Appl. Phys. 108 063305 doi: 10.1063/1.3483935
|
[43] |
Xiong Z et al 2010 J. Appl. Phys. 108 103303 doi: 10.1063/1.3511448
|
[44] |
Shao T et al 2014 EPL 107 65004 doi: 10.1209/0295-5075/107/65004
|
[45] |
Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer
|
[46] |
Ye R B and Zheng W 2008 Appl. Phys. Lett. 93 071502 doi: 10.1063/1.2972119
|
[47] |
Xiong Q et al 2009 J. Appl. Phys. 106 083302 doi: 10.1063/1.3239512
|
[48] |
Wu K Y et al 2023 High Volt. 8 1161 doi: 10.1049/hve2.12327
|
[49] |
Greb A et al 2014 Appl. Phys. Lett. 105 234105 doi: 10.1063/1.4903931
|
[50] |
Xiong Q et al 2010 J. Phys. D: Appl. Phys. 43 415201 doi: 10.1088/0022-3727/43/41/415201
|
[51] |
Chakrabarti K, Laporta V and Tennyson J 2019 Plasma Sources Sci. Technol. 28 085013 doi: 10.1088/1361-6595/ab364c
|
[52] |
Choi J H et al 2006 Plasma Sources Sci. Technol. 15 416 doi: 10.1088/0963-0252/15/3/017
|
[53] |
Shao T et al 2015 IEEE Trans. Plasma Sci. 43 726 doi: 10.1109/TPS.2014.2359515
|
[54] |
Li Q et al 2012 Appl. Phys. Lett. 100 133501 doi: 10.1063/1.3698135
|
[55] |
Xia W J et al 2019 Plasma Sources Sci. Technol. 28 125005 doi: 10.1088/1361-6595/ab5168
|
[56] |
Zhu X M et al 2009 J. Phys. D: Appl. Phys. 42 142003 doi: 10.1088/0022-3727/42/14/142003
|
[57] |
Zhu X M and Pu Y K 2010 J. Phys. D: Appl. Phys. 43 403001 doi: 10.1088/0022-3727/43/40/403001
|
[58] |
Wu K Y et al 2020 Phys. Plasmas 27 082308 doi: 10.1063/5.0002697
|
[59] |
Li S Z et al 2009 Appl. Phys. Lett. 94 111501 doi: 10.1063/1.3099339
|
[60] |
Horvath G et al 2013 IEEE Trans. Plasma Sci. 41 613 doi: 10.1109/TPS.2012.2234140
|
[61] |
Wu S et al 2013 Phys. Plasmas 20 023503 doi: 10.1063/1.4791652
|
[1] | Feiyue MAO, Nengchao WANG, Zhuo HUANG, Zhengkang REN, Song ZHOU, Chengshuo SHEN, Xiaoyi ZHANG, Ying HE, Qi ZHANG, Ruo JIA, Chuanxu ZHAO, Yangbo LI, Bo HU, Da LI, Abba Alhaji BALA, Zhipeng CHEN, Zhongyong CHEN, Zhoujun YANG, Yunfeng LIANG, Yonghua DING, Yuan PAN, J-TEXT Team. Study of the spectrum effect on the threshold of resonant magnetic perturbation penetration on J-TEXT[J]. Plasma Science and Technology, 2022, 24(12): 124002. DOI: 10.1088/2058-6272/ac9f2e |
[2] | Hongmei DU (杜洪梅), Liping ZHANG (张丽萍), Dongao LI (李东澳). THz plasma wave instability in field effect transistor with electron diffusion current density[J]. Plasma Science and Technology, 2018, 20(11): 115001. DOI: 10.1088/2058-6272/aacaef |
[3] | Alexander LYSENKO, Iurii VOLK. Influence of two-stream relativistic electron beam parameters on the space-charge wave with broad frequency spectrum formation[J]. Plasma Science and Technology, 2018, 20(3): 35002-035002. DOI: 10.1088/2058-6272/aaa358 |
[4] | Suyun ZHOU (周素云), Hui CHEN (陈辉), Yanfang LI (李艳芳). Breaking of a Langmuir wave in cold electron–positron–ion plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14008-014008. DOI: 10.1088/2058-6272/aa8cc0 |
[5] | Monzurul K AHMED, Om P SAH. Solitary kinetic Alfvén waves in a dense electron–positron–ion plasma with degenerate electrons and positrons[J]. Plasma Science and Technology, 2017, 19(12): 125302. DOI: 10.1088/2058-6272/aa8765 |
[6] | Neda SHAMSIAN, Babak SHIRANI BIDABADI, Hosein PIRJAMADI. Development of a radiographic method for measuring the discrete spectrum of the electron beam from a plasma focus device[J]. Plasma Science and Technology, 2017, 19(7): 75101-075101. DOI: 10.1088/2058-6272/aa632e |
[7] | LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), SHI Lei (石磊), LIU Donglin (刘东林). Influences of Turbulent Reentry Plasma Sheath on Wave Scattering and Propagation[J]. Plasma Science and Technology, 2016, 18(6): 617-626. DOI: 10.1088/1009-0630/18/6/07 |
[8] | ZHU Zhenni(朱珍妮), WU Zhengwei(吴征威), LI Chunhua(李春华), YANG Weihong(杨维纮). Electron Acoustic Solitary Waves in Magnetized Quantum Plasma with Relativistic Degenerated Electrons[J]. Plasma Science and Technology, 2014, 16(11): 995-999. DOI: 10.1088/1009-0630/16/11/01 |
[9] | GAO Min (高敏), CHEN Shaoyong (陈少永), TANG Changjian (唐昌建). Electron Cyclotron Harmonic Wave Heating in Tokamak Plasmas with Different Polarization Modes[J]. Plasma Science and Technology, 2013, 15(4): 313-317. DOI: 10.1088/1009-0630/15/4/02 |
[10] | LI Chunzao(李春早), LIU Shaobin(刘少斌), BIAN Borui(卞博锐), DAI Zhaoyang(戴钊阳), ZHANG Xueyong(张学勇). Theoretical Analysis on Propagation of Electromagnetic Wave in Preformed Narrow Plasma Channel[J]. Plasma Science and Technology, 2012, 14(8): 702-707. DOI: 10.1088/1009-0630/14/8/04 |
1. | Osca Engelbrecht, M., Ridgers, C.P., Dedrick, J. et al. Particle-in-cell simulations of high frequency capacitively coupled plasmas including spatially localised inductive-like heating. Plasma Sources Science and Technology, 2023, 32(12): 125003. DOI:10.1088/1361-6595/ad0fb1 |
2. | Eremin, D., Kemaneci, E., Matsukuma, M. et al. Modeling of very high frequency large-electrode capacitively coupled plasmas with a fully electromagnetic particle-in-cell code. Plasma Sources Science and Technology, 2023, 32(4): 044007. DOI:10.1088/1361-6595/accecb |
3. | Sun, G., Zhang, S., Sun, A. et al. On the electron sheath theory and its applications in plasma-surface interactions. Plasma Science and Technology, 2022, 24(9): 095401. DOI:10.1088/2058-6272/ac6aa7 |
4. | Xing, Y., Qiao, N., Yu, J. et al. Spectroscopic depth profilometry of organic thin films upon inductively coupled plasma etching. Review of Scientific Instruments, 2022, 93(7): 073903. DOI:10.1063/5.0088718 |
5. | Vass, M., Wilczek, S., Derzsi, A. et al. Evolution of the bulk electric field in capacitively coupled argon plasmas at intermediate pressures. Plasma Sources Science and Technology, 2022, 31(4): 045017. DOI:10.1088/1361-6595/ac6361 |
6. | Su, Z.-X., Shi, D.-H., Liu, Y.-X. et al. Radially-dependent ignition process of a pulsed capacitively coupled RF argon plasma over 300 mm-diameter electrodes: Multi-fold experimental diagnostics. Plasma Sources Science and Technology, 2021, 30(12): 125013. DOI:10.1088/1361-6595/ac3e3f |
7. | Zhao, K., Guo, Y.-Q., Zhang, Q.-Z. et al. Experimental Investigation of Nonlinear Standing Waves in DC/VHF Hybrid Capacitive Discharges. IEEE Transactions on Plasma Science, 2021, 49(11): 3392-3397. DOI:10.1109/TPS.2021.3120596 |