Advanced Search+
Jingwen FAN, Huijie YAN, Ting LI, Yurong MAO, Jiaqi LI, Jian SONG. Surface charge characteristics in a three-electrode surface dielectric barrier discharge[J]. Plasma Science and Technology, 2024, 26(11): 115403. DOI: 10.1088/2058-6272/ad7821
Citation: Jingwen FAN, Huijie YAN, Ting LI, Yurong MAO, Jiaqi LI, Jian SONG. Surface charge characteristics in a three-electrode surface dielectric barrier discharge[J]. Plasma Science and Technology, 2024, 26(11): 115403. DOI: 10.1088/2058-6272/ad7821

Surface charge characteristics in a three-electrode surface dielectric barrier discharge

More Information
  • Author Bio:

    Huijie YAN: yanhuijie@dlut.edu.cn

  • Corresponding author:

    Huijie YAN, yanhuijie@dlut.edu.cn

  • Received Date: March 11, 2024
  • Revised Date: September 01, 2024
  • Accepted Date: September 06, 2024
  • Available Online: September 07, 2024
  • Published Date: October 01, 2024
  • The surface charge characteristics in a three-electrode surface dielectric barrier discharge (SDBD) are experimentally investigated based on the Pockels effect of an electro-optical crystal. The actuator is based on the most commonly used SDBD structure for airflow control, with an exposed electrode supplied with sinusoidal AC high voltage, a grounded encapsulated electrode and an additional exposed electrode downstream supplied with DC voltage. The ionic wind velocity and thrust can be significantly improved by increasing DC voltage although the plasma discharge characteristics are virtually unaffected. It is found that the negative charges generated by the discharge of the three-electrode structure accumulate on the dielectric surface significantly further downstream in an AC period compared to the actuator with a two-electrode structure. The negative charges in the downstream region increase as the DC voltage increases. In addition, the DC voltage affects the time required for the positive charge filaments to decay. The positive DC voltage expands the ionic acceleration zone downstream to produce a greater EHD force. The amplitude of the DC voltage affects the electric field on the dielectric surface and is therefore a key factor in the formation of the EHD force. Further research on the surface charge characteristics of a three-electrode structure has been conducted using a pulse power to drive the discharge, and the same conclusions are drawn. This work demonstrates a link between surface charge characteristics and EHD performance of a three-electrode SDBD actuator.

  • This work was supported by National Natural Science Foundation of China (Nos. 51777026 and 11705075).

  • [1]
    Schatzman D M and Thomas F O 2010 AIAA J. 48 1620 doi: 10.2514/1.J050009
    [2]
    Roth J R, Sherman D M and Wilkinson S P 2000 AIAA J. 38 1166 doi: 10.2514/2.1110
    [3]
    Grundmann S and Tropea C 2007 Exp. Fluids 42 653 doi: 10.1007/s00348-007-0256-8
    [4]
    Mahdavi H and Sohbatzadeh F 2019 Phys. Scr. 94 085204 doi: 10.1088/1402-4896/ab0e17
    [5]
    Abe T et al 2008 AIAA J. 46 2248 doi: 10.2514/1.30985
    [6]
    Qi X H et al 2016 Plasma Sci. Technol. 18 1005 doi: 10.1088/1009-0630/18/10/07
    [7]
    Hoskinson A R, Hershkowitz N and Ashpis D E 2008 J. Phys. D: Appl. Phys. 41 245209 doi: 10.1088/0022-3727/41/24/245209
    [8]
    Debien A, Benard N and Moreau E 2012 J. Phys. D: Appl. Phys. 45 215201 doi: 10.1088/0022-3727/45/21/215201
    [9]
    Benard N and Moreau E 2012 Appl. Phys. Lett. 100 193503 doi: 10.1063/1.4712125
    [10]
    Yan H J et al 2016 J. Phys. D: Appl. Phys. 49 295203 doi: 10.1088/0022-3727/49/29/295203
    [11]
    McGowan R et al 2016 Pulsed-DC plasma actuator characteristics and application in compressor stall control In: Proceedings of 2016 54th AIAA Aerospace Sciences Meeting San Diego: California, USA doi: 10.2514/6.2016-0394
    [12]
    Moreau E, Sosa R and Artana G 2008 J. Phys. D: Appl. Phys. 41 115204 doi: 10.1088/0022-3727/41/11/115204
    [13]
    Cristofolini A, Neretti G and Borghi C A 2013 J. Appl. Phys. 114 073303 doi: 10.1063/1.4817378
    [14]
    Soloviev V R 2012 J. Phys. D: Appl. Phys. 45 025205 doi: 10.1088/0022-3727/45/2/025205
    [15]
    Kim W et al 2007 Appl. Phys. Lett. 91 181501 doi: 10.1063/1.2803755
    [16]
    Deng J B et al 2010 J. Phys. D: Appl. Phys. 43 495203 doi: 10.1088/0022-3727/43/49/495203
    [17]
    Ren C H et al 2023 Plasma Sources Sci. Technol. 32 025004 doi: 10.1088/1361-6595/acb4b9
    [18]
    Pan C et al 2020 IEEE Trans. Dielectr. Electr. Insul. 27 1951 doi: 10.1109/TDEI.2020.008960
    [19]
    Stollenwerk L, Laven J G and Purwins H G 2007 Phys. Rev. Lett. 98 255001 doi: 10.1103/PhysRevLett.98.255001
    [20]
    Wild R, Benduhn J and Stollenwerk L 2014 J. Phys. D: Appl. Phys. 47 435204 doi: 10.1088/0022-3727/47/43/435204
    [21]
    Dosoudilová L et al 2015 J. Phys. D: Appl. Phys. 48 355204 doi: 10.1088/0022-3727/48/35/355204
    [22]
    Tschiersch R, Bogaczyk M and Wagner H E 2014 J. Phys. D: Appl. Phys. 47 365204 doi: 10.1088/0022-3727/47/36/365204
    [23]
    Zhang B et al 2021 High Volt. 6 608 doi: 10.1049/hve2.12073
    [24]
    Takeuchi N et al 2011 J. Electrost. 69 87 doi: 10.1016/j.elstat.2011.01.001
    [25]
    Mitsuhashi K et al 2021 Plasma Sources Sci. Technol. 30 04LT02 doi: 10.1088/1361-6595/abefa7
    [26]
    Sato S et al 2021 J. Phys. D: Appl. Phys. 54 455203 doi: 10.1088/1361-6463/ac1b5d
    [27]
    Yu S Q et al 2022 J. Phys. D: Appl. Phys. 55 125201 doi: 10.1088/1361-6463/ac4184
    [28]
    Li T et al 2022 Plasma Sources Sci. Technol. 31 055016 doi: 10.1088/1361-6595/ac676e
    [29]
    Li J Q et al 2023 J. Appl. Phys. 133 063301 doi: 10.1063/5.0134362
    [30]
    Yan H J et al 2015 J. Appl. Phys. 117 063302 doi: 10.1063/1.4907992
    [31]
    Boeuf J P et al 2007 J. Phys. D: Appl. Phys. 40 652 doi: 10.1088/0022-3727/40/3/S03
    [32]
    Soloviev V R and Krivtsov V M 2009 J. Phys. D: Appl. Phys. 42 125208 doi: 10.1088/0022-3727/42/12/125208
    [33]
    Gibalov V I and Pietsch G J 2012 Plasma Sources Sci. Technol. 21 024010 doi: 10.1088/0963-0252/21/2/024010
  • Related Articles

    [1]Xuwei HUANG (黄旭炜), Zi'an DING (丁梓桉), Tao LIU (刘涛), Qingmin LI (李庆民), Zhongdong WANG (王忠东). Correlation between surface charge and creepage discharge on polymeric dielectrics under high-frequency high-voltage stress[J]. Plasma Science and Technology, 2020, 22(8): 85505-085505. DOI: 10.1088/2058-6272/ab8c33
    [2]Simin ZHOU (周思敏), Xiutao HUANG (黄修涛), Minghai LIU (刘明海). Electrical model and experimental analysis of a double spiral structure surface dielectric barrier discharge[J]. Plasma Science and Technology, 2019, 21(6): 65401-065401. DOI: 10.1088/2058-6272/ab0814
    [3]Songru XIE (谢松汝), Yong HE (何勇), Dingkun YUAN (袁定琨), Zhihua WANG (王智化), Sunel KUMAR, Yanqun ZHU (朱燕群), Kefa CEN (岑可法). The effects of gas flow pattern on the generation of ozone in surface dielectric barrier discharge[J]. Plasma Science and Technology, 2019, 21(5): 55505-055505. DOI: 10.1088/2058-6272/aafc50
    [4]Yanqin LIU (刘彦琴), Guangning WU (吴广宁), Guoqiang GAO (高国强), Jianyi XUE (薛建议), Yongqiang KANG (康永强), Chaoqun SHI (石超群). Surface charge accumulation behavior and its influence on surface flashover performance of Al2O3-filled epoxy resin insulators under DC voltages[J]. Plasma Science and Technology, 2019, 21(5): 55501-055501. DOI: 10.1088/2058-6272/aafdf7
    [5]Donglai WANG (王东来), Tiebing LU (卢铁兵), Yuan WANG (王源), Bo CHEN (陈博), Xuebao LI (李学宝). Measurement of surface charges on the dielectric film based on field mills under the HVDC corona wire[J]. Plasma Science and Technology, 2018, 20(5): 54008-054008. DOI: 10.1088/2058-6272/aaac26
    [6]Qing XIE (谢庆), Haofan LIN (林浩凡), Shuai ZHANG (张帅), Ruixue WANG (王瑞雪), Fei KONG (孔飞), Tao SHAO (邵涛). Deposition of SiCxHyOz thin film on epoxy resin by nanosecond pulsed APPJ for improving the surface insulating performance[J]. Plasma Science and Technology, 2018, 20(2): 25504-025504. DOI: 10.1088/2058-6272/aa97d0
    [7]QI Xiaohua (齐晓华), YANG Liang (杨亮), YAN Huijie (闫慧杰), JIN Ying (金英), HUA Yue (滑跃), REN Chunsheng (任春生). Experimental Study on Surface Dielectric Barrier Discharge Plasma Actuator with Different Encapsulated Electrode Widths for Airflow Control at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(10): 1005-1011. DOI: 10.1088/1009-0630/18/10/07
    [8]ZHANG Yu (张宇), LIU Lijuan (刘莉娟), LI Ben (李犇), OUYANG Jiting (欧阳吉庭). Wire-to-Plate Surface Dielectric Barrier Discharge and Induced Ionic Wind[J]. Plasma Science and Technology, 2016, 18(6): 634-640. DOI: 10.1088/1009-0630/18/6/09
    [9]HONG Yi (洪义), LU Na (鲁娜), PAN Jing (潘静), LI Jie (李杰), WU Yan (吴彦). Discharge Characteristics of an Atmospheric Pressure Argon Plasma Jet Generated with Screw Ring-Ring Electrodes in Surface Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(8): 780-786. DOI: 10.1088/1009-0630/15/8/12
    [10]MU Haibao, ZHANG Guanjun. Calibration Algorithm of Surface Charge Density on Insulating Materials Measured by Pockels Technique[J]. Plasma Science and Technology, 2011, 13(6): 645-650.

Catalog

    Figures(25)  /  Tables(1)

    Article views (33) PDF downloads (13) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return