Advanced Search+
MU Zongxin (牟宗信), WANG Chun (王春), MU Xiaodong (牟晓东), JIA Li (贾莉), LIU Shengguang (刘升光), DONG Chuang(董闯). Experimental Study of the Effect of Applied Magnetic Field on Plasma Properties of Unbalanced Magnetron Sputtering[J]. Plasma Science and Technology, 2010, 12(5): 571-576.
Citation: MU Zongxin (牟宗信), WANG Chun (王春), MU Xiaodong (牟晓东), JIA Li (贾莉), LIU Shengguang (刘升光), DONG Chuang(董闯). Experimental Study of the Effect of Applied Magnetic Field on Plasma Properties of Unbalanced Magnetron Sputtering[J]. Plasma Science and Technology, 2010, 12(5): 571-576.

Experimental Study of the Effect of Applied Magnetic Field on Plasma Properties of Unbalanced Magnetron Sputtering

  • An experimental study of the effect of applied magnetic field on the properties of the plasma and electrostatic oscillations in an unbalanced magnetron sputtering discharge was carried out. The apparatus consists of a magnetron sputtering target, using the conventional magnetic field configuration, and a coaxial coil around the target for an applied axial magnetic field. The dependencies of plasma parameters on the coil current were studied by two Langmuir probes. The resonance properties of electrostatic oscillations were observed. The results indicate that the applied magnetic field affects the plasma properties for the coil current in a range of 0 to 8 A. The frequency bandwidth of the electrostatic oscillations in the unbalanced magnetron sputtering plasma is in a range of 0 to 300 kHz. From the spectrum analysis, the eigenfrequency near the target is in a range of 20 to 50 kHz under typical experimental conditions where all the magnetic field, pressure, and power etc are able to have full impact on the spectrum characteristics. The calculated value of the electron temperature as per an ion acoustic standing wave pattern inside the magnetic trap is in good agreement with the experimental result.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return