Advanced Search+
MU Zongxin (牟宗信), WANG Chun (王春), MU Xiaodong (牟晓东), JIA Li (贾莉), LIU Shengguang (刘升光), DONG Chuang(董闯). Experimental Study of the Effect of Applied Magnetic Field on Plasma Properties of Unbalanced Magnetron Sputtering[J]. Plasma Science and Technology, 2010, 12(5): 571-576.
Citation: MU Zongxin (牟宗信), WANG Chun (王春), MU Xiaodong (牟晓东), JIA Li (贾莉), LIU Shengguang (刘升光), DONG Chuang(董闯). Experimental Study of the Effect of Applied Magnetic Field on Plasma Properties of Unbalanced Magnetron Sputtering[J]. Plasma Science and Technology, 2010, 12(5): 571-576.

Experimental Study of the Effect of Applied Magnetic Field on Plasma Properties of Unbalanced Magnetron Sputtering

More Information
  • An experimental study of the effect of applied magnetic field on the properties of the plasma and electrostatic oscillations in an unbalanced magnetron sputtering discharge was carried out. The apparatus consists of a magnetron sputtering target, using the conventional magnetic field configuration, and a coaxial coil around the target for an applied axial magnetic field. The dependencies of plasma parameters on the coil current were studied by two Langmuir probes. The resonance properties of electrostatic oscillations were observed. The results indicate that the applied magnetic field affects the plasma properties for the coil current in a range of 0 to 8 A. The frequency bandwidth of the electrostatic oscillations in the unbalanced magnetron sputtering plasma is in a range of 0 to 300 kHz. From the spectrum analysis, the eigenfrequency near the target is in a range of 20 to 50 kHz under typical experimental conditions where all the magnetic field, pressure, and power etc are able to have full impact on the spectrum characteristics. The calculated value of the electron temperature as per an ion acoustic standing wave pattern inside the magnetic trap is in good agreement with the experimental result.
  • Related Articles

    [1]Chao YE. Characteristics of radio-frequency magnetron sputtering with Ag target operated near the electron series resonance oscillation[J]. Plasma Science and Technology, 2025, 27(3): 035506. DOI: 10.1088/2058-6272/ada21f
    [2]Zhe YU (俞哲), Jialin ZHAO (赵嘉琳), Rui LIU (刘蕊), Huijuan CAO (曹慧娟), Pu LIU (刘璞), Zhitao ZHANG (张芝涛). Research on resonance parameters matching based on partitioned operation method of atmospheric pressure plasma reactor array[J]. Plasma Science and Technology, 2019, 21(5): 54004-054004. DOI: 10.1088/2058-6272/aaffa2
    [3]Min ZHU (朱敏), Chao YE (叶超), Xiangying WANG (王响英), Amin JIANG (蒋阿敏), Su ZHANG (张苏). Effect of radio-frequency substrate bias on ion properties and sputtering behavior of 2 MHz magnetron sputtering[J]. Plasma Science and Technology, 2019, 21(1): 15507-015507. DOI: 10.1088/2058-6272/aae7dd
    [4]Liqiu WEI (魏立秋), Wenbo LI (李文博), Yongjie DING (丁永杰), Daren YU (于达仁). Effect of low-frequency oscillation on performance of Hall thrusters[J]. Plasma Science and Technology, 2018, 20(7): 75502-075502. DOI: 10.1088/2058-6272/aabae0
    [5]Gerhard FRANZ, Ralf MEYER, Markus-Christian AMANN. Correlation of III/V semiconductor etch results with physical parameters of high-density reactive plasmas excited by electron cyclotron resonance[J]. Plasma Science and Technology, 2017, 19(12): 125503. DOI: 10.1088/2058-6272/aa89e0
    [6]HUO Wenqing (霍文青), GUO Shijie (郭世杰), DING Liang (丁亮), XU Yuemin (徐跃民). Upper Hybrid Resonance of Microwaves with a Large Magnetized Plasma Sheet[J]. Plasma Science and Technology, 2013, 15(10): 979-984. DOI: 10.1088/1009-0630/15/10/04
    [7]Umm-i-KALSOOM, R. AHMAD, Nisar ALI, I. A. KHAN, Sehrish SALEEM, Uzma IKHLAQ, et al. Effect of Power and Nitrogen Content on the Deposition of CrN Films by Using Pulsed DC Magnetron Sputtering Plasma[J]. Plasma Science and Technology, 2013, 15(7): 666-672. DOI: 10.1088/1009-0630/15/7/12
    [8]XIONG Yuqing, SANG Lijun, CHEN Qiang, YANG Lizhen, WANG Zhengduo, LIU Zhongwei. Electron Cyclotron Resonance Plasma-Assisted Atomic Layer Deposition of Amorphous Al2O3 Thin Films[J]. Plasma Science and Technology, 2013, 15(1): 52-55. DOI: 10.1088/1009-0630/15/1/09
    [9]MU Zongxin, LIU Shengguang, ZANG Hairong, WANG Chun, MU Xiaodong. Discharge Properties of High-Power Pulsed Unbalanced Magnetron Sputtering[J]. Plasma Science and Technology, 2011, 13(6): 667-671.
    [10]RU Lili (汝丽丽), HUANG Jianjun (黄建军), GAO Liang (高亮), QI Bing (齐冰). Influence of Microwave Power on the Properties of Hydrogenated Diamond-Like Carbon Films Prepared by ECR Plasma Enhanced DC Magnetron Sputtering[J]. Plasma Science and Technology, 2010, 12(5): 551-555.

Catalog

    Article views (1170) PDF downloads (692) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return