Advanced Search+
CHANG Jiasen, WANG Hu, ZHANG Qiaogen, QIU Aici. Multichannel Discharge Characteristics of Gas Switch Gap in SF6-N2 or SF6-Ar Gas Mixtures under Nanosecond Triggering Pulses[J]. Plasma Science and Technology, 2011, 13(6): 719-723.
Citation: CHANG Jiasen, WANG Hu, ZHANG Qiaogen, QIU Aici. Multichannel Discharge Characteristics of Gas Switch Gap in SF6-N2 or SF6-Ar Gas Mixtures under Nanosecond Triggering Pulses[J]. Plasma Science and Technology, 2011, 13(6): 719-723.

Multichannel Discharge Characteristics of Gas Switch Gap in SF6-N2 or SF6-Ar Gas Mixtures under Nanosecond Triggering Pulses

Funds: sopported by National Natural Science Fiundation of China(No.51177132)
More Information
  • Received Date: July 22, 2011
  • Experiments were carried out to ascertain multichannel discharge characteristics in a self-designed coaxial field-distortion gas switch filled with SF6-N2 or SF6-Ar gas mixtures of different mixing ratios. In these experiments, the pressure varied from 0.1 MPa to 0.2 MPa, the voltage pulse peak applied to the switch was in the range from 40 kV to 78 kV, and the pulse rise time was 11 ns. The static breakdown strength of the gas switch gap in the switch was also measured. The results show that in general the average number of discharge channels for SF6-Ar or SF6-N2 gas mixture which contains less SF6 is larger than that for gas mixture which contains more SF6, however, the average number of channels almost keeps constant as the gas mixing ratio varies when the pulse rise rate is high enough. The static breakdown strength of the gas switch gap decreases slightly as the content of argon or nitrogen increases.
  • Related Articles

    [1]Bin WU (武斌), Chao GAO (高超), Feng LIU (刘峰), Ming XUE (薛明), Yushuai WANG (王玉帅), Borui ZHENG (郑博睿). Reduction of turbulent boundary layer drag through dielectric-barrier-discharge plasma actuation based on the Spalding formula[J]. Plasma Science and Technology, 2019, 21(4): 45501-045501. DOI: 10.1088/2058-6272/aaf2e2
    [2]Runhui WU (邬润辉), Song CHAI (柴忪), Jiaqi LIU (刘佳琪), Shiyuan CONG (从拾源), Gang MENG (孟刚). Numerical simulation and analysis of lithium plasma during low-pressure DC arc discharge[J]. Plasma Science and Technology, 2019, 21(4): 44002-044002. DOI: 10.1088/2058-6272/aafbc7
    [3]Jun DENG (邓俊), Liming HE (何立明), Xingjian LIU (刘兴建), Yi CHEN (陈一). Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber[J]. Plasma Science and Technology, 2018, 20(12): 125502. DOI: 10.1088/2058-6272/aacdef
    [4]Guobao FENG (封国宝), Wanzhao CUI (崔万照), Lu LIU (刘璐). Dynamic characteristics of charging effects on the dielectric constant due to E-beam irradiation: a numerical simulation[J]. Plasma Science and Technology, 2018, 20(3): 35001-035001. DOI: 10.1088/2058-6272/aa9d0d
    [5]Gui LI (李桂), Muyang QIAN (钱沐杨), Sanqiu LIU (刘三秋), Huaying CHEN (陈华英), Chunsheng REN (任春生), Dezhen WANG (王德真). A numerical simulation study on active species production in dense methane-air plasma discharge[J]. Plasma Science and Technology, 2018, 20(1): 14004-014004. DOI: 10.1088/2058-6272/aa8f3c
    [6]R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10
    [7]ZHUANG Juan (庄娟), SUN Jizhong (孙继忠), SANG Chaofeng (桑超峰), WANG Dezhen (王德真). Numerical Simulation of VHF E®ects on Densities of Important Species for Silicon Film Deposition at Atmospheric Pressure[J]. Plasma Science and Technology, 2012, 14(12): 1106-1109. DOI: 10.1088/1009-0630/14/12/13
    [8]YANG Fei (杨飞), RONG Mingzhe (荣命哲), WU Yi (吴翊), SUN Hao (孙昊), MA Ruiguang (马瑞光), NIU Chunping (纽春萍). Numerical Simulation of the Eddy Current Effects in the Arc Splitting Process[J]. Plasma Science and Technology, 2012, 14(11): 974-979. DOI: 10.1088/1009-0630/14/11/05
    [9]ZHANG Ling(张玲), WANG Lijun (王立军), JIA Shenli(贾申利), YANG Dingge(杨鼎革), SHI Zongqian(史宗谦). Numerical simulation of high-current vacuum arc with consideration of anode vapor[J]. Plasma Science and Technology, 2012, 14(4): 285-292. DOI: 10.1088/1009-0630/14/4/04
    [10]WU Junhui, WANG Xiaohua, MA Zhiying, RONG Mingzhe, YAN Jing. Numerical Simulation of Gas Flow during Arcing Process for 252kV Puffer Circuit Breakers[J]. Plasma Science and Technology, 2011, 13(6): 730-734.

Catalog

    Article views (594) PDF downloads (326) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return