Advanced Search+
SHEN Yongjun(沈拥军), LEI Lecheng(雷乐成), ZHANG Xingwang(张兴旺), DING Jiandong(丁建东). Degradation of Acid Orange 7 Dye in Two Hybrid Plasma Discharge Reactors[J]. Plasma Science and Technology, 2014, 16(11): 1020-1031. DOI: 10.1088/1009-0630/16/11/05
Citation: SHEN Yongjun(沈拥军), LEI Lecheng(雷乐成), ZHANG Xingwang(张兴旺), DING Jiandong(丁建东). Degradation of Acid Orange 7 Dye in Two Hybrid Plasma Discharge Reactors[J]. Plasma Science and Technology, 2014, 16(11): 1020-1031. DOI: 10.1088/1009-0630/16/11/05

Degradation of Acid Orange 7 Dye in Two Hybrid Plasma Discharge Reactors

Funds: supported by National Natural Science Foundation of China (Nos. 21246010 and 20336030) and Natural Science Foundation of Nantong University of China (No. 03041134)
More Information
  • Received Date: September 22, 2013
  • To get an optimized pulsed electrical plasma discharge reactor and to increase the energy utilization efficiency in the removal of pollutants, two hybrid plasma discharge reactors were designed and optimized. The reactors were compared via the discharge characteristics, energy transfer efficiency, the yields of the active species and the energy utilization in dye wastewater degradation. The results showed that under the same AC input power, the characteristics of the discharge waveform of the point-to-plate reactor were better. Under the same AC input power, the two reactors both had almost the same peak voltage of 22 kV. The peak current of the point-to-plate reactor was 146 A, while that of the wire-to-cylinder reactor was only 48.8 A. The peak powers of the point-to-plate reactor and the wire-to-cylinder reactor were 1.38 MW and 1.01 MW, respectively. The energy per pulse of the point-to-plate reactor was 0.2221 J, which was about 29.4% higher than that of the wire-to-cylinder reactor (0.1716 J). To remove 50% Acid Orange 7 (AO7), the energy utilizations of the point-to-plate reactor and the wireto- cylinder reactor were 1.02×10−9 mol/L and 0.61×10−9 mol/L, respectively. In the point-toplate reactor, the concentration of hydrogen peroxide in pure water was 3.6 mmol/L after 40 min of discharge, which was higher than that of the wire-to-cylinder reactor (2.5 mmol/L). The concentration of liquid phase ozone in the point-to-plate reactor (5.7×10−2 mmol/L) was about 26.7% higher than that in the wire-to-cylinder reactor (4.5×10−2 mmol/L). The analysis results of the variance showed that the type of reactor and reaction time had significant impacts on the yields of the hydrogen peroxide and ozone. The main degradation intermediates of AO7 identified by gas chromatography and mass spectrometry (GCMS) were acetic acid, maleic anhydride, pbenzoquinone, phenol, benzoic acid, phthalic anhydride, coumarin and 2-naphthol. Proposed degradation pathways were elucidated in light of the analyzed degradation products.
  • 1 Chen J X, Zhu L Z. 2008, Sep. Purif. Technol., 67: 282
    2 Wang R C, Ren D J, Xia S Q, et al. 2009, J. Hazard.Mater., 169: 926
    3 Qian F Y, Sun X B, Liu Y D. 2013, Chem. Eng. J.,214: 112
    4 Zhang X W, Zhou M H, Lei L C. 2006, Carbon, 44:325
    5 Kalyanaraman C, Kanchinadham B K, Devi L V. 2012,Ind. Eng. Chem. Res., 51: 16171
    6 Vedrenne M, Vasquez-Medrano R, Prato-Garcia D.2012, J. Hazard. Mater., 243: 292
    7 Gu L, Zhang X W, Lei L C, Liu X J. 2009, Water Sci.Technol., 60: 3061
    8 Su J Y, Yu H T, Quan X, et al. 2013, Appl. Catal. B Environ., 138: 427
    9 Dai Q Z, Shen H, Xia Y J, et al. 2013, Sep. Purf.Technol., 104: 9
    10 Guan Q Q, Wei C H, Chai X S. 2011, Chem. Eng. J.,175: 201
    11 Clements J S, Sato M, Davis R H. 1987, IEEE Trans.Ind. Appl., IA-23: 224
    12 Sharma A K, Locke B R, Arce P, Finney W C. 1993,Hazard. Waste Hazard., 10: 209
    13 Lukes P, Appleton A T, Locke B R. 2004, IEEE Trans.Ind. Appl., 40: 60
    14 Shen Y J, Lei L C, Zhang X W, et al. 2008, J. Hazard.Mater., 150: 713
    15 Zhang Y, Xin Q, Cong Y Q, et al. 2013, Chem. Eng.J., 215: 261
    16 Bo Z, Yang Y, Chen J H, et al. 2013, Nanoscale, 5:5180
    17 Joshi A A, Locke B R, Arce P, Finney W C. 1995, J.Hazard. Mater., 41: 3
    18 Willberg D M, Lang P S, Hochemer R H, et al. 1996,Environ. Sci. Technol., 30: 2526
    19 Sun B, Sato M. 1999, J. Phys. D: Appl. Phys., 32:1908
    20 Lukes P, Locke B R. 2005, J. Phys. D: Appl. Phys.,38: 4074
    21 Shen Y J, Lei L C, Zhang X W, et al. 2008, Energy Convers. Manage., 49: 2254
    22 Zhang J, Liu D Q, Bian W J. 2012, Desalination, 304:49
    23 Hoeben W F L M, van Veldhuizen E M, Rutgers W R, et al. 1999, J. Phys. D: Appl. Phys., 32: 133
    24 Wang H J, Li J, Quan X. 2008, Appl. Catal. B Environ.,83: 72
    25 Zheng C, Xu Y Z, Huang H M, et al. 2013, AICHE J.,59: 1458
    26 Kirkpatrick M J, Locke B R. 2005, Ind. Eng. Chem.Res., 44: 4243
    27 Liu Y J, Wang D G, Sun B, Zhu X M. 2010, J. Hazard.Mater., 181: 1010
    28 Liu C J, Zou J J, Yu K L. 2006, Pure Appl. Chem.,78: 1227
    29 Gong J Y, Cai W M. 2007, Plasma Sci. Technol., 9:190
    30 Wang T C, Lu N, Li J, Wu Y. 2011, Environ. Sci.Technol., 45: 9301
    31 Benetoli L O B, Cadorin B M, Postiglione C S. 2011,J. Brazi. Chem. Soci., 22: 1669
    32 Malik M A. 2010, Plasma Chem. Plasma P., 30: 21
    33 Parkansky N, Simon E F, Alterkop B A, et al. 2013,Plasma Chem. Plasma P., 33: 907
    34 Malik M A, Ubaid-ur-Rehman A, Ahmed G K. 2002,Plasma Sources Sci. Technol., 11: 236
    35 Yang B, Lei L C, Zhou M H. 2005, Chemosphere, 60:405
    36 Xin Q, Zhang Y, Wu K B. 2013, J. Envrion. Sci. Heal.A, 48: 293
    37 Sunka P. 2001, Phys. Plasmas, 8: 2587
    38 Lukes P, Clupek M, Babicky V, et al. 2008, IEEE Trans. Plasma Sci., 36: 1146
    39 Zhu T, Zhang Q, Shi X, et al. 2008, IEEE Trans.Plasma Sci., 36: 237
    40 Wen X Q, Wang M, Ding Z F, Liu G S. 2012, Plasma Sci. Technol., 14: 293
    41 Malik M A, Minamitani Y, Xiao S, et al. 2005, IEEE Tran. Plasma Sci., 33: 490
    42 Bader H, Hoigne J. 1981, Water Res., 15: 449
    43 Selles R M. 1980, Analyst, 105: 950
    44 Lei L C, Zhang Y, Zhang X W. 2008, J. Electrostat.,66: 16
    45 Zhang Y, Zhou M H, Lei L C. 2007, Chem. Eng. J.,132: 325
    46 Mok Y S. 2000, Plasma Chem. Plasma P., 20: 353
    47 Lin H, Gao X, Luo Z Y, et al. 2004, Fuel, 83: 1251
    48 Rea M, Yan K. 1995, IEEE Trans. Ind. Appl., 31: 507
    49 Yan K, Nair S A, Hooijmans M, et al. 2003, Macro Review, 16: 226
    50 Zhong X, Royer S, Zhang H, et al. 2011, Sep. Purif.Technol., 80: 163
    51 Chen X Y, Wang W P, Xiao H, et al. 2012, Chem.Eng. J., 193-194: 290
    52 Lu C S, Mai F D,Wu C W, et al. 2008, Dyes Pigments,76: 706
    53 Guivarch E, Trevin S, Lahitte C. 2003, Environ. Chem.Letter., 1: 38
    54 Spadaro J T, Isabele L, Renganathan V. 1994, Environ.Sci. Technol., 32: 1389
    55 Yan J H, Liu Y N, Bo Z, et al. 2008, J. Hazard. Mater.,157: 441
    56 Sema A, Aviyente V. 2005, J. Phys. Chem. A, 109:3506
    57 Mok Y S, Jo J O, Whitehead J C. 2008, Chem. Eng.J., 142: 56
    58 Li J, Zhou Z,Wang H, Li G,Wu Y. 2007, Desalination,212: 123
  • Related Articles

    [1]Baowei WANG (王保伟), Chao WANG (王超), Shumei YAO (姚淑美), Yeping PENG (彭叶平), Yan XU (徐艳). Plasma-catalytic degradation of tetracycline hydrochloride over Mn/γ-Al2O3 catalysts in a dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2019, 21(6): 65503-065503. DOI: 10.1088/2058-6272/ab079c
    [2]Jingyu REN (任景俞), Nan JIANG (姜楠), Kefeng SHANG (商克峰), Na LU (鲁娜), Jie LI (李杰), Yan WU (吴彦). Evaluation of trans-ferulic acid degradation by dielectric barrier discharge plasma combined with ozone in wastewater with different water quality conditions[J]. Plasma Science and Technology, 2019, 21(2): 25501-025501. DOI: 10.1088/2058-6272/aaef65
    [3]Ying CAO (曹颖), Jie LI (李杰), Nan JIANG (姜楠), Yan WU (吴彦), Kefeng SHANG (商克峰), Na LU (鲁娜). The structure optimization of gas-phase surface discharge and its application for dye degradation[J]. Plasma Science and Technology, 2018, 20(5): 54018-054018. DOI: 10.1088/2058-6272/aaa3d5
    [4]LIU Yan (刘燕), YANG Li (杨丽), YANG Gang (杨刚), ZHANG Yanzong (张延宗), ZHANG Xiaohong (张小洪), DENG Shihuai (邓仕槐). Degradation of Dye Wastewater by Pulsed High-Voltage Discharge Combined with Spent Tea Leaves[J]. Plasma Science and Technology, 2014, 16(12): 1135-1140. DOI: 10.1088/1009-0630/16/12/09
    [5]WANG Zhaojun(王兆均), JIANG Song(姜松), LIU Kefu(刘克富). Treatment of Wastewater with High Conductivity by Pulsed Discharge Plasma[J]. Plasma Science and Technology, 2014, 16(7): 688-694. DOI: 10.1088/1009-0630/16/7/10
    [6]GAO Jin (高进), GU Pingdao (顾平道), YUAN Li (袁里), ZHONG Fangchuan (钟方川). Degradation of Dye Wastewater by ns-Pulse DBD Plasma[J]. Plasma Science and Technology, 2013, 15(9): 928-934. DOI: 10.1088/1009-0630/15/9/18
    [7]Nabila HADDOU, Mouffok Redounae GHEZZAR, Fatiha ABDELMALEK, et al.. Competitive Contribution of Catalyst and Adsorption Roles of TiO 2 on the Degradation of AO7 Dye During Plasma Treatment[J]. Plasma Science and Technology, 2013, 15(9): 915-922. DOI: 10.1088/1009-0630/15/9/16
    [8]S. D. KIM, D. I. JANG, B. J. LIM, S. B. LEE, Y. S. MOK. Degradation of Synthetic Dyeing Wastewater by Underwater Electrical Discharge Processes[J]. Plasma Science and Technology, 2013, 15(7): 659-662. DOI: 10.1088/1009-0630/15/7/11
    [9]LU Na(鲁娜), LI Jie(李杰), WU Yan(吴彦), Masayuki Sato(佐藤正之). Treatment of Dye Wastewater by Using a Hybrid Gas/Liquid Pulsed Discharge Plasma Reactor[J]. Plasma Science and Technology, 2012, 14(2): 162-166. DOI: 10.1088/1009-0630/14/2/15
    [10]JIANG Nan(姜楠), LU Na (鲁娜), LI Jie(李杰), WU Yan(吴彦). Degradation of Benzene by Using a Silent-Packed Bed Hybrid Discharge Plasma Rreactor[J]. Plasma Science and Technology, 2012, 14(2): 140-146. DOI: 10.1088/1009-0630/14/2/11

Catalog

    Article views (433) PDF downloads (1198) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return