Advanced Search+
SHEN Yongjun(沈拥军), LEI Lecheng(雷乐成), ZHANG Xingwang(张兴旺), DING Jiandong(丁建东). Degradation of Acid Orange 7 Dye in Two Hybrid Plasma Discharge Reactors[J]. Plasma Science and Technology, 2014, 16(11): 1020-1031. DOI: 10.1088/1009-0630/16/11/05
Citation: SHEN Yongjun(沈拥军), LEI Lecheng(雷乐成), ZHANG Xingwang(张兴旺), DING Jiandong(丁建东). Degradation of Acid Orange 7 Dye in Two Hybrid Plasma Discharge Reactors[J]. Plasma Science and Technology, 2014, 16(11): 1020-1031. DOI: 10.1088/1009-0630/16/11/05

Degradation of Acid Orange 7 Dye in Two Hybrid Plasma Discharge Reactors

Funds: supported by National Natural Science Foundation of China (Nos. 21246010 and 20336030) and Natural Science Foundation of Nantong University of China (No. 03041134)
More Information
  • Received Date: September 22, 2013
  • To get an optimized pulsed electrical plasma discharge reactor and to increase the energy utilization efficiency in the removal of pollutants, two hybrid plasma discharge reactors were designed and optimized. The reactors were compared via the discharge characteristics, energy transfer efficiency, the yields of the active species and the energy utilization in dye wastewater degradation. The results showed that under the same AC input power, the characteristics of the discharge waveform of the point-to-plate reactor were better. Under the same AC input power, the two reactors both had almost the same peak voltage of 22 kV. The peak current of the point-to-plate reactor was 146 A, while that of the wire-to-cylinder reactor was only 48.8 A. The peak powers of the point-to-plate reactor and the wire-to-cylinder reactor were 1.38 MW and 1.01 MW, respectively. The energy per pulse of the point-to-plate reactor was 0.2221 J, which was about 29.4% higher than that of the wire-to-cylinder reactor (0.1716 J). To remove 50% Acid Orange 7 (AO7), the energy utilizations of the point-to-plate reactor and the wireto- cylinder reactor were 1.02×10−9 mol/L and 0.61×10−9 mol/L, respectively. In the point-toplate reactor, the concentration of hydrogen peroxide in pure water was 3.6 mmol/L after 40 min of discharge, which was higher than that of the wire-to-cylinder reactor (2.5 mmol/L). The concentration of liquid phase ozone in the point-to-plate reactor (5.7×10−2 mmol/L) was about 26.7% higher than that in the wire-to-cylinder reactor (4.5×10−2 mmol/L). The analysis results of the variance showed that the type of reactor and reaction time had significant impacts on the yields of the hydrogen peroxide and ozone. The main degradation intermediates of AO7 identified by gas chromatography and mass spectrometry (GCMS) were acetic acid, maleic anhydride, pbenzoquinone, phenol, benzoic acid, phthalic anhydride, coumarin and 2-naphthol. Proposed degradation pathways were elucidated in light of the analyzed degradation products.
  • 1 Chen J X, Zhu L Z. 2008, Sep. Purif. Technol., 67: 282
    2 Wang R C, Ren D J, Xia S Q, et al. 2009, J. Hazard.Mater., 169: 926
    3 Qian F Y, Sun X B, Liu Y D. 2013, Chem. Eng. J.,214: 112
    4 Zhang X W, Zhou M H, Lei L C. 2006, Carbon, 44:325
    5 Kalyanaraman C, Kanchinadham B K, Devi L V. 2012,Ind. Eng. Chem. Res., 51: 16171
    6 Vedrenne M, Vasquez-Medrano R, Prato-Garcia D.2012, J. Hazard. Mater., 243: 292
    7 Gu L, Zhang X W, Lei L C, Liu X J. 2009, Water Sci.Technol., 60: 3061
    8 Su J Y, Yu H T, Quan X, et al. 2013, Appl. Catal. B Environ., 138: 427
    9 Dai Q Z, Shen H, Xia Y J, et al. 2013, Sep. Purf.Technol., 104: 9
    10 Guan Q Q, Wei C H, Chai X S. 2011, Chem. Eng. J.,175: 201
    11 Clements J S, Sato M, Davis R H. 1987, IEEE Trans.Ind. Appl., IA-23: 224
    12 Sharma A K, Locke B R, Arce P, Finney W C. 1993,Hazard. Waste Hazard., 10: 209
    13 Lukes P, Appleton A T, Locke B R. 2004, IEEE Trans.Ind. Appl., 40: 60
    14 Shen Y J, Lei L C, Zhang X W, et al. 2008, J. Hazard.Mater., 150: 713
    15 Zhang Y, Xin Q, Cong Y Q, et al. 2013, Chem. Eng.J., 215: 261
    16 Bo Z, Yang Y, Chen J H, et al. 2013, Nanoscale, 5:5180
    17 Joshi A A, Locke B R, Arce P, Finney W C. 1995, J.Hazard. Mater., 41: 3
    18 Willberg D M, Lang P S, Hochemer R H, et al. 1996,Environ. Sci. Technol., 30: 2526
    19 Sun B, Sato M. 1999, J. Phys. D: Appl. Phys., 32:1908
    20 Lukes P, Locke B R. 2005, J. Phys. D: Appl. Phys.,38: 4074
    21 Shen Y J, Lei L C, Zhang X W, et al. 2008, Energy Convers. Manage., 49: 2254
    22 Zhang J, Liu D Q, Bian W J. 2012, Desalination, 304:49
    23 Hoeben W F L M, van Veldhuizen E M, Rutgers W R, et al. 1999, J. Phys. D: Appl. Phys., 32: 133
    24 Wang H J, Li J, Quan X. 2008, Appl. Catal. B Environ.,83: 72
    25 Zheng C, Xu Y Z, Huang H M, et al. 2013, AICHE J.,59: 1458
    26 Kirkpatrick M J, Locke B R. 2005, Ind. Eng. Chem.Res., 44: 4243
    27 Liu Y J, Wang D G, Sun B, Zhu X M. 2010, J. Hazard.Mater., 181: 1010
    28 Liu C J, Zou J J, Yu K L. 2006, Pure Appl. Chem.,78: 1227
    29 Gong J Y, Cai W M. 2007, Plasma Sci. Technol., 9:190
    30 Wang T C, Lu N, Li J, Wu Y. 2011, Environ. Sci.Technol., 45: 9301
    31 Benetoli L O B, Cadorin B M, Postiglione C S. 2011,J. Brazi. Chem. Soci., 22: 1669
    32 Malik M A. 2010, Plasma Chem. Plasma P., 30: 21
    33 Parkansky N, Simon E F, Alterkop B A, et al. 2013,Plasma Chem. Plasma P., 33: 907
    34 Malik M A, Ubaid-ur-Rehman A, Ahmed G K. 2002,Plasma Sources Sci. Technol., 11: 236
    35 Yang B, Lei L C, Zhou M H. 2005, Chemosphere, 60:405
    36 Xin Q, Zhang Y, Wu K B. 2013, J. Envrion. Sci. Heal.A, 48: 293
    37 Sunka P. 2001, Phys. Plasmas, 8: 2587
    38 Lukes P, Clupek M, Babicky V, et al. 2008, IEEE Trans. Plasma Sci., 36: 1146
    39 Zhu T, Zhang Q, Shi X, et al. 2008, IEEE Trans.Plasma Sci., 36: 237
    40 Wen X Q, Wang M, Ding Z F, Liu G S. 2012, Plasma Sci. Technol., 14: 293
    41 Malik M A, Minamitani Y, Xiao S, et al. 2005, IEEE Tran. Plasma Sci., 33: 490
    42 Bader H, Hoigne J. 1981, Water Res., 15: 449
    43 Selles R M. 1980, Analyst, 105: 950
    44 Lei L C, Zhang Y, Zhang X W. 2008, J. Electrostat.,66: 16
    45 Zhang Y, Zhou M H, Lei L C. 2007, Chem. Eng. J.,132: 325
    46 Mok Y S. 2000, Plasma Chem. Plasma P., 20: 353
    47 Lin H, Gao X, Luo Z Y, et al. 2004, Fuel, 83: 1251
    48 Rea M, Yan K. 1995, IEEE Trans. Ind. Appl., 31: 507
    49 Yan K, Nair S A, Hooijmans M, et al. 2003, Macro Review, 16: 226
    50 Zhong X, Royer S, Zhang H, et al. 2011, Sep. Purif.Technol., 80: 163
    51 Chen X Y, Wang W P, Xiao H, et al. 2012, Chem.Eng. J., 193-194: 290
    52 Lu C S, Mai F D,Wu C W, et al. 2008, Dyes Pigments,76: 706
    53 Guivarch E, Trevin S, Lahitte C. 2003, Environ. Chem.Letter., 1: 38
    54 Spadaro J T, Isabele L, Renganathan V. 1994, Environ.Sci. Technol., 32: 1389
    55 Yan J H, Liu Y N, Bo Z, et al. 2008, J. Hazard. Mater.,157: 441
    56 Sema A, Aviyente V. 2005, J. Phys. Chem. A, 109:3506
    57 Mok Y S, Jo J O, Whitehead J C. 2008, Chem. Eng.J., 142: 56
    58 Li J, Zhou Z,Wang H, Li G,Wu Y. 2007, Desalination,212: 123
  • Related Articles

    [1]Bei Ye, Ge Gao, Shusheng Wang , Ya Li, Qian Jiang. Research on grounding protection system of the central solenoid model coil of the CRAFT[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/adbc34
    [2]Chong GAO, Zhongjian KANG, Dajian GONG, Yang ZHANG, Yufang WANG, Yiming SUN. Novel method for identifying the stages of discharge underwater based on impedance change characteristic[J]. Plasma Science and Technology, 2024, 26(4): 045503. DOI: 10.1088/2058-6272/ad0d56
    [3]Haibing LI (李海冰), Jie ZHU (朱杰), Wei YANG (杨威), Xu ZHANG (张旭), Donglai WANG (王东来), Junyu ZHU (朱俊谕), Xingming BIAN (卞星明). Humidity effects on the ground-level resultant electric field of positive DC conductors[J]. Plasma Science and Technology, 2019, 21(7): 74001-074001. DOI: 10.1088/2058-6272/ab0a3f
    [4]Haixin HU (胡海欣), Feng HE (何锋), Ping ZHU (朱平), Jiting OUYANG (欧阳吉庭). Numerical study of the influence of dielectric tube on propagation of atmospheric pressure plasma jet based on coplanar dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(5): 54010-054010. DOI: 10.1088/2058-6272/aaaad9
    [5]Jianhua WANG (王健华), Gen CHEN (陈根), Yanping ZHAO (赵燕平), Yuzhou MAO (毛玉周), Shuai YUAN (袁帅), Xinjun ZHANG (张新军), Hua YANG (杨桦), Chengming QIN (秦成明), Yan CHENG (程艳), Yuqing YANG (杨宇晴), Guillaume URBANCZYK, Lunan LIU (刘鲁南), Jian CHENG (程健). Design and test of voltage and current probes for EAST ICRF antenna impedance measurement[J]. Plasma Science and Technology, 2018, 20(4): 45603-045603. DOI: 10.1088/2058-6272/aaa7ea
    [6]Rokibul ISLAM, Shuzheng XIE, Karl R ENGLUND, Patrick D PEDROW. Plasma polymerized acetylene deposition using a return corona enhanced plasma reactor[J]. Plasma Science and Technology, 2017, 19(8): 85501-085501. DOI: 10.1088/2058-6272/aa6bef
    [7]Yonggang WANG (王永刚), Liqing TONG (童立青), Kefu LIU (刘克富). Impedance matching for repetitive high voltage all-solid-state Marx generator and excimer DBD UV sources[J]. Plasma Science and Technology, 2017, 19(6): 64002-064002. DOI: 10.1088/2058-6272/aa6153
    [8]Bo ZHANG (张波), Ying ZHU (朱颖), Feng LIU (刘峰), Zhi FANG (方志). The influence of grounded electrode positions on the evolution and characteristics of an atmospheric pressure argon plasma jet[J]. Plasma Science and Technology, 2017, 19(6): 64001-064001. DOI: 10.1088/2058-6272/aa629f
    [9]GE Lei(葛蕾), ZHANG Yuantao(张远涛). A Simple Model for the Calculation of Plasma Impedance in Atmospheric Radio Frequency Discharges[J]. Plasma Science and Technology, 2014, 16(10): 924-929. DOI: 10.1088/1009-0630/16/10/05
    [10]ZHENG Na (郑娜), ZHONG Chunlai (钟春来), FAN Tieshuan(樊铁栓). The Calculation of Prompt Fission Neutron from 233U(n, f) Reaction by Multi-Modal Los Alamos Model[J]. Plasma Science and Technology, 2012, 14(6): 521-525. DOI: 10.1088/1009-0630/14/6/19

Catalog

    Article views (433) PDF downloads (1198) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return