Advanced Search+
CUI Xinglei (崔行磊), ZHOU Xue (周学), ZHAI Guofu (翟国富), PENG Xiyuan (彭喜元). Evaporation Erosion During the Relay Contact Breaking Process Based on a Simplified Arc Model[J]. Plasma Science and Technology, 2016, 18(5): 512-519. DOI: 10.1088/1009-0630/18/5/12
Citation: CUI Xinglei (崔行磊), ZHOU Xue (周学), ZHAI Guofu (翟国富), PENG Xiyuan (彭喜元). Evaporation Erosion During the Relay Contact Breaking Process Based on a Simplified Arc Model[J]. Plasma Science and Technology, 2016, 18(5): 512-519. DOI: 10.1088/1009-0630/18/5/12

Evaporation Erosion During the Relay Contact Breaking Process Based on a Simplified Arc Model

Funds: supported by National Natural Science Foundation of China (Nos. 51377038, 51307030)
More Information
  • Received Date: September 08, 2015
  • Evaporation erosion of the contacts is one of the fundamental failure mechanisms for relays. In this paper, the evaporation erosion characteristics are investigated for the copper contact pair breaking a resistive direct current (dc) 30 V/10 A circuit in the air. Molten pool simulation of the contacts is coupled with the gas dynamics to calculate the evaporation rate. A simplified arc model is constructed to obtain the contact voltage and current variations with time for the prediction of the current density and the heat flux distributions flowing from the arc into the contacts. The evaporation rate and mass variations with time during the breaking process are presented. Experiments are carried out to verify the simulation results.
  • 1 Swingler J, McBride J W. 1996, IEEE Trans. CPMT,19: 404 2 Lu F G, Tang X H. 2006, Computational Materials Science, 35: 458 3 Rong M Z, Ma Q, Wu Y, et al. 2009, J. Appl. Phys.,106: 023308 4 Tepper J, Seeger M, Votteler T, et al. 2006, IEEE Trans. CPMT, 29: 658 5 Yang F, Rong M Z, Wu Y, et al. 2010, J. Phys. D:Appl. Phys., 43: 434011 6 Yang F, Wu Y, Rong M Z, et al. 2013, J. Phys. D:Appl. Phys., 46: 273001 7 Sarrailh P, Garrigues L, Hagelaar G J M, et al. 2009,J. Appl. Phys., 106: 053305 8 Long N P, Takana Y, Uesugi Y. 2012, IEEE Trans.Plasma Sci., 40: 497 9 Wang L J, Zhou X, Wang H J, et al. 2012, IEEE Trans.Plasma Sci., 40: 2237 10 Lowke J J, Morrow R, Haidar J. 1997, J. Phys. D:Appl. Phys., 30: 2033 11 Cayla F, Freton P, Gonzalez J J. 2008, IEEE Trans.Plasma Sci., 36: 1944 12 Coulombe S, Meunier J L. 1997, J. Phys. D: Appl.Phys., 30: 2905 13 DebRoy T, Basu S, Mundra K. 1991, J. Appl. Phys,70: 1313 14 Bellantone R, Hahn Y. 1994, J. Appl. Phys., 76: 1436 15 DebRoy T, David S A. 1995, Rev. Mod. Phys., 67: 85 16 Wang L J, Jia S L, Liu Y, et al. 2010, J. Appl. Phys.,107: 113306 17 Wang L J, Zhou X, Wang H J, et al. 2012, IEEE Trans.Plasma Sci., 40: 2237 18 Ma R G, Rong M Z, Yang F, et al. 2013, IEEE Trans.Plasma Sci., 41: 2551 19 Slade P G. 1999, The Arc and Interruption in Electrical Contacts: Principles and Applications. Marcel Dekker, New York 20 Zeller P. 2009, A simple arc model for the simulation of the clearing time of drawn arcs with a commercial electronics simulation tool. Proceedings of the 55 th Holm Conf. Elec. Contacts, Vancouver, Canada 21 Shea J J. 2008, High Current AC Break Arc Contact Erosion. Proceedings of the 54 th Holm Conf. Elec.Contacts, Orlando, USA 22 Gleizes A, Gonzalez J J, Freton P. 2005, J. Phys. D:Appl. Phys., 38: R153 23 Steenbeck M. 1932, Zeit. Phys., 33: 809 24 Mundra K, Debroy T. 1993, Metallurgical Transactions B, 24B: 145 25 Juttner B. 1999, IEEE Trans. Plasma Sci., 27: 836 26 Siemroth P, Schulke T, Witke T. 1995, IEEE Trans.Plasma Sci., 23: 919 27 Tanaka M, Lowke J J. 2007, J. Phys. D: Appl. Phys.,40: R1 28 Nemchinsky V A, Showalter M S. 2003, J. Phys. D:Appl. Phys., 36: 704 29 Rakhovskii V I. 1976, IEEE Trans. Plasma Sci., 4: 81 30 Sharakhovsky L I, Marotta A, Borisyuk V N. 1997, J.Phys. D: Appl. Phys., 30: 2018 31 Zhang J L, Yan J D, Fang M T C. 2004, IEEE Trans.Plasma Sci., 32: 1352 32 Yokomizu Y, Matsumura T, Henmi R, et al. 1996, J.Phys. D: Appl. Phys., 29: 1260 33 Schmitz H, Riemann K U. 2002, J. Phys. D: Appl.Phys., 35: 1727
  • Related Articles

    [1]Yuhui ZHANG (张雨晖), Wenjun NING (宁文军), Dong DAI (戴栋), Qiao WANG (王乔). Influence of nitrogen impurities on the characteristics of a patterned helium dielectric barrier discharge at atmospheric pressure[J]. Plasma Science and Technology, 2019, 21(7): 74003-074003. DOI: 10.1088/2058-6272/ab10a7
    [2]H ASHRAF, S Z A SHAH, H I A QAZI, M A KHAN, S HUSSAIN, M A BADAR, S NIAZ, M SHAFIQ. Electrical features of radio-frequency atmospheric pressure helium discharge with and without dielectric electrodes[J]. Plasma Science and Technology, 2019, 21(2): 25403-025403. DOI: 10.1088/2058-6272/aaede1
    [3]PAN Jie (潘杰), LI Li (李莉), WANG Yunuan (王玉暖), XIU Xianwu (修显武), WANG Chao (王超), SONG Yuzhi (宋玉志). Particle Densities of the Atmospheric-Pressure Argon Plasmas Generated by the Pulsed Dielectric Barrier Discharges[J]. Plasma Science and Technology, 2016, 18(11): 1081-1088. DOI: 10.1088/1009-0630/18/11/05
    [4]PENG Shi (彭释), LI Lingjun (李灵均), LI Wei (李炜), WANG Chaoliang (王超梁), GUO Ying (郭颖), SHI Jianjun (石建军), ZHANG Jing (张菁). Surface Modification of Polyimide Film by Dielectric Barrier Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(4): 337-341. DOI: 10.1088/1009-0630/18/4/01
    [5]Setareh SALARIEH, Davoud DORRANIAN. Sterilization of Turmeric by Atmospheric Pressure Dielectric Barrier Discharge Plasma[J]. Plasma Science and Technology, 2013, 15(11): 1122-1126. DOI: 10.1088/1009-0630/15/11/09
    [6]H. I. A. QAZI, M. SHARIF, S. HUSSAIN, M. A. BADAR, H. AFZAL. Spectroscopic Study of a Radio-Frequency Atmospheric Pressure Dielectric Barrier Discharge with Anodic Alumina as the Dielectric[J]. Plasma Science and Technology, 2013, 15(9): 900-903. DOI: 10.1088/1009-0630/15/9/13
    [7]LIU Xinkun (刘新坤), XU Jinzhou (徐金洲), CUI Tongfei (崔桐菲), GUO Ying (郭颖), et al.. Gas Breakdown of Radio Frequency Glow Discharges in Helium at near Atmospheric Pressure[J]. Plasma Science and Technology, 2013, 15(7): 623-626. DOI: 10.1088/1009-0630/15/7/04
    [8]LI Xuechun (李雪春), WANG Huan (王欢), DING Zhenfeng (丁振峰), WANG Younian (王友年). Effect of Duty Cycle on the Characteristics of Pulse-Modulated Radio-Frequency Atmospheric Pressure Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2012, 14(12): 1069-1072. DOI: 10.1088/1009-0630/14/12/06
    [9]TAO Xiaoping (陶小平), LU Rongde (卢荣德), LI Hui (李辉). Electrical characteristics of dielectric-barrier discharges in atmospheric pressure air using a power-frequency voltage source[J]. Plasma Science and Technology, 2012, 14(8): 723-727. DOI: 10.1088/1009-0630/14/8/08
    [10]Vadim Yu. PLAKSIN, Oleksiy V. PENKOV, Min Kook KO, Heon Ju LEE. Exhaust Cleaning with Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2010, 12(6): 688-691.

Catalog

    Article views (419) PDF downloads (820) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return