Advanced Search+
CUI Xinglei (崔行磊), ZHOU Xue (周学), ZHAI Guofu (翟国富), PENG Xiyuan (彭喜元). Evaporation Erosion During the Relay Contact Breaking Process Based on a Simplified Arc Model[J]. Plasma Science and Technology, 2016, 18(5): 512-519. DOI: 10.1088/1009-0630/18/5/12
Citation: CUI Xinglei (崔行磊), ZHOU Xue (周学), ZHAI Guofu (翟国富), PENG Xiyuan (彭喜元). Evaporation Erosion During the Relay Contact Breaking Process Based on a Simplified Arc Model[J]. Plasma Science and Technology, 2016, 18(5): 512-519. DOI: 10.1088/1009-0630/18/5/12

Evaporation Erosion During the Relay Contact Breaking Process Based on a Simplified Arc Model

Funds: supported by National Natural Science Foundation of China (Nos. 51377038, 51307030)
More Information
  • Received Date: September 08, 2015
  • Evaporation erosion of the contacts is one of the fundamental failure mechanisms for relays. In this paper, the evaporation erosion characteristics are investigated for the copper contact pair breaking a resistive direct current (dc) 30 V/10 A circuit in the air. Molten pool simulation of the contacts is coupled with the gas dynamics to calculate the evaporation rate. A simplified arc model is constructed to obtain the contact voltage and current variations with time for the prediction of the current density and the heat flux distributions flowing from the arc into the contacts. The evaporation rate and mass variations with time during the breaking process are presented. Experiments are carried out to verify the simulation results.
  • 1 Swingler J, McBride J W. 1996, IEEE Trans. CPMT,19: 404 2 Lu F G, Tang X H. 2006, Computational Materials Science, 35: 458 3 Rong M Z, Ma Q, Wu Y, et al. 2009, J. Appl. Phys.,106: 023308 4 Tepper J, Seeger M, Votteler T, et al. 2006, IEEE Trans. CPMT, 29: 658 5 Yang F, Rong M Z, Wu Y, et al. 2010, J. Phys. D:Appl. Phys., 43: 434011 6 Yang F, Wu Y, Rong M Z, et al. 2013, J. Phys. D:Appl. Phys., 46: 273001 7 Sarrailh P, Garrigues L, Hagelaar G J M, et al. 2009,J. Appl. Phys., 106: 053305 8 Long N P, Takana Y, Uesugi Y. 2012, IEEE Trans.Plasma Sci., 40: 497 9 Wang L J, Zhou X, Wang H J, et al. 2012, IEEE Trans.Plasma Sci., 40: 2237 10 Lowke J J, Morrow R, Haidar J. 1997, J. Phys. D:Appl. Phys., 30: 2033 11 Cayla F, Freton P, Gonzalez J J. 2008, IEEE Trans.Plasma Sci., 36: 1944 12 Coulombe S, Meunier J L. 1997, J. Phys. D: Appl.Phys., 30: 2905 13 DebRoy T, Basu S, Mundra K. 1991, J. Appl. Phys,70: 1313 14 Bellantone R, Hahn Y. 1994, J. Appl. Phys., 76: 1436 15 DebRoy T, David S A. 1995, Rev. Mod. Phys., 67: 85 16 Wang L J, Jia S L, Liu Y, et al. 2010, J. Appl. Phys.,107: 113306 17 Wang L J, Zhou X, Wang H J, et al. 2012, IEEE Trans.Plasma Sci., 40: 2237 18 Ma R G, Rong M Z, Yang F, et al. 2013, IEEE Trans.Plasma Sci., 41: 2551 19 Slade P G. 1999, The Arc and Interruption in Electrical Contacts: Principles and Applications. Marcel Dekker, New York 20 Zeller P. 2009, A simple arc model for the simulation of the clearing time of drawn arcs with a commercial electronics simulation tool. Proceedings of the 55 th Holm Conf. Elec. Contacts, Vancouver, Canada 21 Shea J J. 2008, High Current AC Break Arc Contact Erosion. Proceedings of the 54 th Holm Conf. Elec.Contacts, Orlando, USA 22 Gleizes A, Gonzalez J J, Freton P. 2005, J. Phys. D:Appl. Phys., 38: R153 23 Steenbeck M. 1932, Zeit. Phys., 33: 809 24 Mundra K, Debroy T. 1993, Metallurgical Transactions B, 24B: 145 25 Juttner B. 1999, IEEE Trans. Plasma Sci., 27: 836 26 Siemroth P, Schulke T, Witke T. 1995, IEEE Trans.Plasma Sci., 23: 919 27 Tanaka M, Lowke J J. 2007, J. Phys. D: Appl. Phys.,40: R1 28 Nemchinsky V A, Showalter M S. 2003, J. Phys. D:Appl. Phys., 36: 704 29 Rakhovskii V I. 1976, IEEE Trans. Plasma Sci., 4: 81 30 Sharakhovsky L I, Marotta A, Borisyuk V N. 1997, J.Phys. D: Appl. Phys., 30: 2018 31 Zhang J L, Yan J D, Fang M T C. 2004, IEEE Trans.Plasma Sci., 32: 1352 32 Yokomizu Y, Matsumura T, Henmi R, et al. 1996, J.Phys. D: Appl. Phys., 29: 1260 33 Schmitz H, Riemann K U. 2002, J. Phys. D: Appl.Phys., 35: 1727
  • Related Articles

    [1]Hanyu ZHANG, Lina ZHOU, Yueqiang LIU, Guangzhou HAO, Shuo WANG, Xu YANG, Yutian MIAO, Ping DUAN, Long CHEN. Deep learning approaches to recover the plasma current density profile from the safety factor based on Grad–Shafranov solutions across multiple tokamaks[J]. Plasma Science and Technology, 2024, 26(5): 055101. DOI: 10.1088/2058-6272/ad13e3
    [2]Haochen FAN, Guoqiang LI, Jinping QIAN, Xuexi ZHANG, Xiaohe WU, Yuqi CHU, Xiang ZHU, Hui LIAN, Haiqing LIU, Bo LYU, Yifei JIN, Qing ZANG, Jia HUANG. Kinetic equilibrium reconstruction with internal safety factor profile constraints on EAST tokamak[J]. Plasma Science and Technology, 2024, 26(4): 045102. DOI: 10.1088/2058-6272/ad0d48
    [3]Yemin HU, Liuqing WANG, Shuhang BAI, Zhi YU, Tianyang XIA. Numerical analysis for the free-boundary current reversal equilibrium in the AC plasma current operation in a tokamak[J]. Plasma Science and Technology, 2024, 26(2): 025102. DOI: 10.1088/2058-6272/ad0c98
    [4]Yue MING (明玥), Deng ZHOU (周登), Wenjia WANG (王文家). Geodesic acoustic modes in tokamak plasmas with anisotropic distribution and a radial equilibrium electric field[J]. Plasma Science and Technology, 2018, 20(8): 85101-085101. DOI: 10.1088/2058-6272/aabc5c
    [5]Zhen ZHENG (郑振), Nong XIANG (项农), Jiale CHEN (陈佳乐), Siye DING (丁斯晔), Hongfei DU (杜红飞), Guoqiang LI (李国强), Yifeng WANG (王一丰), Haiqing LIU (刘海庆), Yingying LI (李颖颖), Bo LYU (吕波), Qing ZANG (臧庆). Kinetic equilibrium reconstruction for the NBI-and ICRH-heated H-mode plasma on EAST tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65103-065103. DOI: 10.1088/2058-6272/aab262
    [6]Hailong GAO (高海龙), Tao XU (徐涛), Zhongyong CHEN (陈忠勇), Ge ZHUANG (庄革). Plasma equilibrium calculation in J-TEXT tokamak[J]. Plasma Science and Technology, 2017, 19(11): 115101. DOI: 10.1088/2058-6272/aa7f26
    [7]WANG Zhongtian (王中天), WANG Long (王龙), LONG Yongxing (龙永兴), DONG Jiaqi (董家齐), HE Zhixiong (何志雄), LIU Yu (刘宇), TANG Changjian (唐昌建). Shaping Effects of the E-Fishbone in Tokamaks[J]. Plasma Science and Technology, 2013, 15(1): 12-16. DOI: 10.1088/1009-0630/15/1/03
    [8]LI Li(李莉), LIU Yue (刘悦), XU Xinyang(许欣洋), XIA Xinnian(夏新念). The Effect of Equilibrium Current Profiles on MHD Instabilities in Tokamaks[J]. Plasma Science and Technology, 2012, 14(1): 14-19. DOI: 10.1088/1009-0630/14/1/04
    [9]HE Zhixiong, DONG Jiaqi, HE Hongda, JIANG Haibin, GAO Zhe, ZHANG Jinhua. MHD Equilibrium Configuration Reconstructions for HL-2A Tokamak[J]. Plasma Science and Technology, 2011, 13(4): 424-430.
    [10]Yukihiro TOMITA, Gakushi KAWAMURA, HUANG Zhihui, PAN Yudong, YAN Longwen. Dust Charging and Dynamics in Tokamaks[J]. Plasma Science and Technology, 2011, 13(1): 11-14.

Catalog

    Article views (419) PDF downloads (820) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return