Advanced Search+
F. MEHARI, M. ROHDE, C. KNIPFER, R. KANAWADE, F. KL¨AMPFL, W. ADLER, N. OETTER, F. STELZLE, M. SCHMIDT. Investigation of Laser Induced Breakdown Spectroscopy (LIBS) for the Differentiation of Nerve and Gland Tissue–A Possible Application for a Laser Surgery Feedback Control Mechanism[J]. Plasma Science and Technology, 2016, 18(6): 654-660. DOI: 10.1088/1009-0630/18/6/12
Citation: F. MEHARI, M. ROHDE, C. KNIPFER, R. KANAWADE, F. KL¨AMPFL, W. ADLER, N. OETTER, F. STELZLE, M. SCHMIDT. Investigation of Laser Induced Breakdown Spectroscopy (LIBS) for the Differentiation of Nerve and Gland Tissue–A Possible Application for a Laser Surgery Feedback Control Mechanism[J]. Plasma Science and Technology, 2016, 18(6): 654-660. DOI: 10.1088/1009-0630/18/6/12

Investigation of Laser Induced Breakdown Spectroscopy (LIBS) for the Differentiation of Nerve and Gland Tissue–A Possible Application for a Laser Surgery Feedback Control Mechanism

More Information
  • Received Date: August 31, 2015
  • Laser surgery provides clean, fast and accurate modeling of tissue. However, the inability to determine what kind of tissue is being ablated at the bottom of the cut may lead to the iatrogenic damage of structures that were meant to be preserved. In this context, nerve preservation is one of the key challenges in any surgical procedure. One example is the treatment of parotid gland pathologies, where the facial nerve (N. VII) and its main branches run through and fan out inside the glands parenchyma. A feedback system that automatically stops the ablation to prevent nerve-tissue damage could greatly increase the applicability and safety of surgical laser systems. In the present study, Laser Induced Breakdown Spectroscopy (LIBS) is used to differentiate between nerve and gland tissue of an ex-vivo pig animal model. The LIBS results obtained in this preliminary experiment suggest that the measured spectra, containing atomic and molecular emissions, can be used to differentiate between the two tissue types. The measurements and differentiation were performed in open air and under normal stray light conditions.
  • 1 Iro H, Zenk J. 2014, Laryngo Rhino Otol., 93: s103 2 Foresta E, Torroni A, Nardo F, et al. 2014, Oral Surg.Oral Med-Oral Pathol. Oral Radiol., 117: 663 3 Lagha A, Chraiet N, Ayadi M, et al. 2012, Head Neck Onco., 4: 19 4 Laurie S A, Licitra L. 2006, J. Clin. Oncol., 24: 2673 5 Gosain A. 1995, Clin. Plast. Surg., 22: 241 6 Davis R, Anson B, Budinger J, et al. 1956, Surg. Gynecol. Obstet., 102: 385 7 Tweedie D, Jacob A. 2009, Clin. Otolaryngol., 34: 303 8 Witt R. 2002, Laryngoscope, 112: 2141 9 O’Brien C. 2003, Head Neck, 25: 946 10 Iro H, Zenk J, Koch M, et al. 2013, Head Neck, 35: 788 11 Nouraei S, Hope K, Kelly C, et al. 2005, Plast. Reconstr. Surg., 116: 1206 12 Ho A, Scott A, Klassen A, et al. 2012, Plast. Reconstr.Surg., 130: 91 13 Carruth J. 1984, J. Med. Eng. Technol., 8: 161 14 Ben-Bassat M, Kaplan I, Shindel Y, et al. 1978, Br. J.Plast. Surg., 31: 155 15 Strong M, Vaughan C, Healy G, et al. 1979, Laryngoscope, 89: 897 16 Carruth J. 1982, J. Laryngol. Otol., 96: 529 17 Gaspar L. 1994, J. Clin. Laser Med. Surg., 12: 281 18 Schoelch M, Sekandari N, Regezi J, et al. 1999, Laryngoscope, 109: 949 19 Astor F, Hanft K. 2003, J. Clin. Laser Med. Surg., 21:297 20 Basu M, Frame J, Rhys Evans P. 1988, J. Laryngol.Otol., 102: 322 21 Luomanen M. 1987, Eur. J. Oral Sci., 95: 65 22 Fisher S, Frame J. 1984, Br. J. Oral Maxillofac. Surg.,22: 414 23 Bryant G, Davidson J, Ossoff R, et al. 1998, Laryngoscope, 108: 13 24 Lopez-Jornet P, Camacho-Alonso F. 2013, Med. Oral Patol. Oral Cir. Bucal., 18: e38 25 Baxter G, Walsh D, Allen J, et al. 1994, Exp. Physiol., 79: 227 26 Menovsky T, Van Den Bergh Weerman M, Beek J. 1996, Microsurgery, 17: 562 27 Menovsky T, Van Den Bergh Weerman M, Beek J. 2000, Microsurgery, 20: 150 28 Orchardson R, Peacock J, Whitters C. 1997, Lasers Surg. Med., 21: 142 29 Kanawade R, Mehari F, Knipfer C, et al. 2013, Spectrochim. Acta Part B: At. Spectrosc., 87: 175 30 Mehari F, Rohde M, Knipfer C, et al. 2014, Biomed.Opt. Express, 5: 4013 31 Cremers D. 2006, Handbook of Laser-Induced Breakdown Spectroscopy. John and Wiley, Chichester, Eng- land 32 Cremers D, Chinni R. 2009, Appl. Spectrosc. Rev., 44:457 33 Myakalwar A, Sreedhar S, Barman I, et al. 2011, J.Talanta, 87: 53 34 Samek O, Liska M, Kaiser J, et al. 1999, Laser ablation for mineral analysis in the human body: integration of LIFS with LIBS, SPIE, Stockholm, Sweden, p.263 35 Kramida A, Ralchenko Y, Reader J. 2012, NIST Atomic Spectra Database (ver. 5.0), National Institute of Standards and Technology, Gaithersburg, MD (Available at: http://physics. nist. gov/asd) 36 Woodard H, White D. 1986, Br. J. Radiol., 59: 1209
  • Related Articles

    [1]Qiuyun WANG (王秋云), Anmin CHEN (陈安民), Wanpeng XU (徐万鹏), Dan ZHANG (张丹), Ying WANG (王莹), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Time-resolved spectroscopy of femtosecond laser-induced Cu plasma with spark discharge[J]. Plasma Science and Technology, 2019, 21(6): 65504-065504. DOI: 10.1088/2058-6272/ab0fa6
    [2]Jinjia GUO (郭金家), Al-Salihi MAHMOUD, Nan LI (李楠), Jiaojian SONG (宋矫健), Ronger ZHENG (郑荣儿). Study of pressure effects on ocean in-situ detection using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34022-034022. DOI: 10.1088/2058-6272/aaf091
    [3]Harse SATTAR (哈里斯), Liying SUN (孙立影), Muhammad IMRAN (伊穆), Ran HAI (海然), Ding WU (吴鼎), Hongbin DING (丁洪斌). Effect of parameter setting and spectral normalization approach on study of matrix effect by laser induced breakdown spectroscopy of Ag–Zn binary composites[J]. Plasma Science and Technology, 2019, 21(3): 34019-034019. DOI: 10.1088/2058-6272/aaf712
    [4]Congyuan PAN (潘从元), Jiao HE (何娇), Guangqian WANG (王广谦), Xuewei DU (杜学维), Yongbin LIU (刘永斌), Yahui SU (苏亚辉). An efficient procedure in quantitative analysis using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34012-034012. DOI: 10.1088/2058-6272/aaf50f
    [5]Manjeet SINGH, Arnab SARKAR. Time-resolved evaluation of uranium plasma in different atmospheres by laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2018, 20(12): 125501. DOI: 10.1088/2058-6272/aad866
    [6]Dan LUO (罗丹), Ying LIU (刘英), Xiangyu LI (李香宇), Zhenyang ZHAO (赵珍阳), Shigong WANG (王世功), Yong ZHANG (张勇). Quantitative analysis of C, Si, Mn, Ni, Cr and Cu in low-alloy steel under ambient conditions via laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2018, 20(7): 75504-075504. DOI: 10.1088/2058-6272/aabc5d
    [7]Zhenhua HU (胡振华), Cong LI (李聪), Qingmei XIAO (肖青梅), Ping LIU (刘平), Fang DING (丁芳), Hongmin MAO (毛红敏), Jing WU (吴婧), Dongye ZHAO (赵栋烨), Hongbin DING (丁洪斌), Guang-Nan LUO (罗广南), EAST team. Preliminary results of in situ laser-induced breakdown spectroscopy for the first wall diagnostics on EAST[J]. Plasma Science and Technology, 2017, 19(2): 25502-025502. DOI: 10.1088/2058-6272/19/2/025502
    [8]HE Li’ao (何力骜), WANG Qianqian (王茜蒨), ZHAO Yu (赵宇), LIU Li (刘莉), PENG Zhong (彭中). Study on Cluster Analysis Used with Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(6): 647-653. DOI: 10.1088/1009-0630/18/6/11
    [9]WU Ding (吴鼎), LIU Ping (刘平), SUN Liying (孙立影), HAI Ran (海然), DING Hongbin (丁洪斌). Influence of a Static Magnetic Field on Laser Induced Tungsten Plasma in Air[J]. Plasma Science and Technology, 2016, 18(4): 364-369. DOI: 10.1088/1009-0630/18/4/06
    [10]ZHAO Dongye(赵栋烨), FARID Nazar(纳扎), HAI Ran(海然), WU Ding(吴鼎), DING Hongbin(丁洪斌). Diagnostics of First Wall Materials in a Magnetically Confined Fusion Device by Polarization-Resolved Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2014, 16(2): 149-154. DOI: 10.1088/1009-0630/16/2/11

Catalog

    Article views (398) PDF downloads (634) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return