Advanced Search+
Jinjia GUO (郭金家), Al-Salihi MAHMOUD, Nan LI (李楠), Jiaojian SONG (宋矫健), Ronger ZHENG (郑荣儿). Study of pressure effects on ocean in-situ detection using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34022-034022. DOI: 10.1088/2058-6272/aaf091
Citation: Jinjia GUO (郭金家), Al-Salihi MAHMOUD, Nan LI (李楠), Jiaojian SONG (宋矫健), Ronger ZHENG (郑荣儿). Study of pressure effects on ocean in-situ detection using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34022-034022. DOI: 10.1088/2058-6272/aaf091

Study of pressure effects on ocean in-situ detection using laser-induced breakdown spectroscopy

Funds: This work was supported by National Key Research and Development Program of China (No. 2016YFC0302102); Fundamental Research Funds for the Central Universities (No. 201822003).
More Information
  • Received Date: August 20, 2018
  • Laser-induced breakdown spectroscopy (LIBS) has attracted extensive attention as a new technique for in-situ marine application. In this work, the influence of deep-sea high pressure environment on LIBS signals was investigated by using a compact LIBS-sea system developed by Ocean University of China for the in-situ chemical analysis of seawater. The results from the field measurements show that the liquid pressure has a significant effect on the LIBS signals. Higher peak intensity and larger line broadening were obtained as the pressure increases. By comparing the variations of the temperature and salinity with the LIBS signals, a weak correlation between them can be observed. Under high pressure conditions, the optimal laser energy was higher than that in air environment. When the laser energy exceeded 17 mJ, the effect of laser energy on the signal intensity weakened. The signal intensity decreases gradually at larger delays. The obtained results verified the feasibility of the LIBS technique for the deep-sea in-situ detection, and we hope this technology can contribute to surveying more deep-sea environments such as the hydrothermal vent regions.
  • [1]
    Brewer P G et al 2004 Deep Sea Res. Part I: Oceanogr. Res. Pap. 51 739
    [2]
    Guirado S, Fortes F J and Laserna J J 2015 Talanta 137 182
    [3]
    Demina L L et al 2013 J. Mar. Syst. 126 94
    [4]
    Seyfried W E Jr et al 2011 Geochim. Cosmochim. Acta 75 1574
    [5]
    Tivey M K 2007 Oceanography 20 50
    [6]
    Michel A P M et al 2007 Appl. Opt. 46 2507
    [7]
    Thornton B and Ura T 2011 Appl. Phys. Exp. 4 022702
    [8]
    Hou H M et al 2014 J. Anal. At. Spectrom. 29 169
    [9]
    Kennedy P K, Hammer D X and Rockwell B A 1997 Prog. Quantum Electron. 21 155
    [10]
    Lazic V and Jovi?evi? S 2014 Spectrochim. Acta Part B: At. Spectrosc. 101 288
    [11]
    Tian Y et al 2015 Appl. Phys. Lett. 107 111107
    [12]
    De Giacomo A et al 2011 J. Phys. Chem. C 115 5123
    [13]
    De Giacomo A et al 2006 Anal. Bioanal. Chem. 385 303
    [14]
    Casavola A et al 2005 Spectrochim. Acta Part B: At. Spectrosc. 60 975
    [15]
    Lazic V et al 2007 Spectrochim. Acta Part B: At. Spectrosc. 62 30
    [16]
    Lawrence-Snyder M et al 2007 Appl. Spectrosc. 61 171
    [17]
    Takahashi T, Thornton B and Ura T 2013 Appl. Phys. Exp. 6 042403
    [18]
    Sakka T et al 2006 Appl. Phys. Lett. 88 061120
    [19]
    Sakka T et al 2014 Spectrochim. Acta Part B: At. Spectrosc. 97 94
    [20]
    Thornton B et al 2014 Spectrochim. Acta Part B: At. Spectrosc. 97 7
    [21]
    Thornton B et al 2015 Deep Sea Res. Part I: Oceanogr. Res. Pap. 95 20
    [22]
    Tian Y et al 2016 Appl. Phys. Lett. 109 061104
    [23]
    Song J J et al 2018 Appl. Opt. 57 1640
    [24]
    Bearman G 1989 Ocean Chemistry and Deep-Sea Sediments (Sydney: Pergamon)
    [25]
    Gamo T et al 1993 Deep Sea Res. Part I: Oceanogr. Res. Pap. 40 2335
    [26]
    Verhoff B et al 2012 J. Appl. Phys. 112 093303
    [27]
    Hou H M et al 2014 Appl. Phys. Exp. 7 032402
    [28]
    De Giacomo A et al 2007 Spectrochim. Acta Part B: At. Spectrosc. 62 721
    [29]
    Tian Y et al 2017 Appl. Phys. Exp. 10 072401
  • Related Articles

    [1]Tadatake SATO, Kenichi TASHIRO, Yoshizo KAWAGUCHI, Hideki OHMURA, Haruhisa AKIYAMA. Investigation of the factors affecting the limit of detection of laser-induced breakdown spectroscopy for surface inspection[J]. Plasma Science and Technology, 2019, 21(3): 34021-034021. DOI: 10.1088/2058-6272/aaf5ef
    [2]Jiamin LIU (刘佳敏), Ding WU (吴鼎), Cailong FU (付彩龙), Ran HAI (海然), Xiao YU (于潇), Liying SUN (孙立影), Hongbin DING (丁洪斌). Improvement of quantitative analysis of molybdenum element using PLS-based approaches for laser-induced breakdown spectroscopy in various pressure environments[J]. Plasma Science and Technology, 2019, 21(3): 34017-034017. DOI: 10.1088/2058-6272/aaf821
    [3]Chengxu LU (吕程序), Bo WANG (王博), Xunpeng JIANG (姜训鹏), Junning ZHANG (张俊宁), Kang NIU (牛康), Yanwei YUAN (苑严伟). Detection of K in soil using time-resolved laser-induced breakdown spectroscopy based on convolutional neural networks[J]. Plasma Science and Technology, 2019, 21(3): 34014-034014. DOI: 10.1088/2058-6272/aaef6e
    [4]Dan ZHANG (张丹), Anmin CHEN (陈安民), Qiuyun WANG (王秋云), Ying WANG (王莹), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Effect of lens focusing distance on laser-induced silicon plasmas at different sample temperatures[J]. Plasma Science and Technology, 2019, 21(3): 34009-034009. DOI: 10.1088/2058-6272/aaec9b
    [5]Li FANG (方丽), Nanjing ZHAO (赵南京), Mingjun MA (马明俊), Deshuo MENG (孟德硕), Yao JIA (贾尧), Xingjiu HUANG (黄行九), Wenqing LIU (刘文清), Jianguo LIU (刘建国). Detection of heavy metals in water samples by laser-induced breakdown spectroscopy combined with annular groove graphite flakes[J]. Plasma Science and Technology, 2019, 21(3): 34002-034002. DOI: 10.1088/2058-6272/aae7dc
    [6]Yao JIA (贾尧), Nanjing ZHAO (赵南京), Li FANG (方丽), Mingjun MA (马明俊), Deshuo MENG (孟德硕), Gaofang YIN (殷高方), Jianguo LIU (刘建国), Wenqing LIU (刘文清). Online calibration of laser-induced breakdown spectroscopy for detection of heavy metals in water[J]. Plasma Science and Technology, 2018, 20(9): 95503-095503. DOI: 10.1088/2058-6272/aac42f
    [7]Zhenhua JIANG (姜振华), Junfeng SHAO (邵俊峰), Tingfeng WANG (王挺峰), Jin GUO (郭劲), Dan ZHANG (张丹), Anmin CHEN (陈安民), Mingxing JIN (金明星). Effect of distances between lens and sample surface on laser-induced breakdown spectroscopy with spatial confinement[J]. Plasma Science and Technology, 2018, 20(8): 85503-085503. DOI: 10.1088/2058-6272/aabc5e
    [8]Zhenhua HU (胡振华), Cong LI (李聪), Qingmei XIAO (肖青梅), Ping LIU (刘平), Fang DING (丁芳), Hongmin MAO (毛红敏), Jing WU (吴婧), Dongye ZHAO (赵栋烨), Hongbin DING (丁洪斌), Guang-Nan LUO (罗广南), EAST team. Preliminary results of in situ laser-induced breakdown spectroscopy for the first wall diagnostics on EAST[J]. Plasma Science and Technology, 2017, 19(2): 25502-025502. DOI: 10.1088/2058-6272/19/2/025502
    [9]Ali KHUMAENI, Wahyu Setia BUDI, Asep Yoyo WARDAYA, Rinda HEDWIG, Koo Hendrik KURNIAWAN. Rapid Detection of Oil Pollution in Soil by Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(12): 1186-1191. DOI: 10.1088/1009-0630/18/12/08
    [10]ZHANG Jialiang (张家良), WANG Shangmin (王尚民), ZHAO Lixian (赵丽贤), LIU Liying (刘莉莹), WANG Dezhen (王德真). Feasibility of Trace Alcohol Congener Detection and Identification Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2014, 16(12): 1119-1125. DOI: 10.1088/1009-0630/16/12/07

Catalog

    Article views (144) PDF downloads (285) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return