Citation: | Jiamin LIU (刘佳敏), Ding WU (吴鼎), Cailong FU (付彩龙), Ran HAI (海然), Xiao YU (于潇), Liying SUN (孙立影), Hongbin DING (丁洪斌). Improvement of quantitative analysis of molybdenum element using PLS-based approaches for laser-induced breakdown spectroscopy in various pressure environments[J]. Plasma Science and Technology, 2019, 21(3): 34017-034017. DOI: 10.1088/2058-6272/aaf821 |
[1] |
Zhao D Y et al 2014 Plasma Sci. Technol. 16 149
|
[2] |
Tanabe T et al 2009 J. Nucl. Mater. 390–391 705
|
[3] |
Hayashi T et al 2006 J. Nucl. Mater. 349 6
|
[4] |
Masaki K et al 2003 J. Nucl. Mater. 313–316 514
|
[5] |
Tokunaga K et al 1995 J. Nucl. Mater. 220–222 800
|
[6] |
Toussaint U V et al 1999 New J. Phys. 1 11
|
[7] |
Oya Y et al 2003 J. Nucl. Mater. 313–316 209
|
[8] |
Richou M et al 2007 Carbon 45 2723
|
[9] |
Suresh P 2014 Portable, real-time alloy identification of metallic wear debris from machinery lubrication systems: laser-induced breakdown spectroscopy versus x-ray fluorescence Proc. SPIE 9101 91010K
|
[10] |
Liu P et al 2018 Plasma Chem. Plasma Process. 38 803
|
[11] |
Wang Z Z et al 2016 Front. Phys. 11 114213
|
[12] |
Li C et al 2015 J. Nucl. Mater. 463 915
|
[13] |
Zorov N B et al 2010 Spectrochim. Acta B 65 642
|
[14] |
Popov A M et al 2007 Spectrochim. Acta B 62 211
|
[15] |
Tanaka T et al 1995 Anal. Sci. 11 967
|
[16] |
Feng J et al 2010 Spectrochim. Acta B 65 549
|
[17] |
Almaviva S et al 2012 J. Nucl. Mater. 421 73
|
[18] |
Fantoni R et al 2013 Spectrochim. Acta B 87 153
|
[19] |
Cristoforetti G et al 2010 Spectrochim. Acta B 65 86
|
[20] |
Hahn D W et al 2010 Appl. Spectrosc. 64 335
|
[21] |
Sheng L W et al 2015 J. Anal. At. Spectrom. 30 453
|
[22] |
Feng J et al 2011 Anal. Bioanal. Chem. 400 3261
|
[23] |
Gao X et al 2009 J. Nucl. Mater. 390–391 864
|
[24] |
Chen Y et al 2009 Fusion Eng. Des. 84 2167
|
[25] |
Hai R et al 2013 Spectrochim. Acta B 87 147
|
[26] |
Farid N et al 2013 J. Nucl. Mater. 438 183
|
[27] |
Cremers D A and Radziemski L J 2006 Handbook of Laser- Induced Breakdown Spectroscopy (West Sussex: Wiley)
|
[28] |
NIST Atomic Spectra Database (ver.5.1), National Institute of Standards and Technology http://physics.nist.gov/asd
|
[29] |
Fornarini L et al 2005 Spectrochim. Acta B 60 1186
|
[30] |
Feng J et al 2013 Appl. Spectrosc. 67 291
|
[31] |
Broadhurst D et al 1997 Anal. Chim. Acta 348 71
|
[32] |
Hernández-García R et al 2017 Microchem. J. 130 21
|
[33] |
Yuan T B et al 2013 J. Anal. At. Spectrom. 28 1045
|
[1] | Jiujiang YAN, Ke LIU, Jinxiu MA, Yang LI, Kailong LI, Hongwei WEI. Ultra-simplified design and quantitative analysis for the optical system of compact laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2025, 27(3): 035503. DOI: 10.1088/2058-6272/ad9e90 |
[2] | Weiwei HAN, Duixiong SUN, Guoding ZHANG, Honglin WANG, Kai GUO, Yuzhuo ZHANG, Haoliang WANG, Denghong ZHANG, Chenzhong DONG, Maogen SU. Research on batch multielement rapid quantitative analysis based on the standard curve-assisted calibration-free laser-induced breakdown spectroscopy method[J]. Plasma Science and Technology, 2024, 26(9): 095502. DOI: 10.1088/2058-6272/ad5119 |
[3] | Yaxiong HE, Tao XU, Yong ZHANG, Chuan KE, Yong ZHAO, Shu LIU. Quantitative analysis and time-resolved characterization of simulated tokamak exhaust gas by laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2022, 24(4): 045506. DOI: 10.1088/2058-6272/ac45e4 |
[4] | Yaguang MEI (梅亚光), Shusen CHENG (程树森), Zhongqi HAO (郝中骐), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Xiaoyan ZENG (曾晓雁), Junliang GE (葛军亮). Quantitative analysis of steel and iron by laser-induced breakdown spectroscopy using GA-KELM[J]. Plasma Science and Technology, 2019, 21(3): 34020-034020. DOI: 10.1088/2058-6272/aaf6f3 |
[5] | Xiaomeng LI (李晓萌), Huili LU (陆慧丽), Jianhong YANG (阳建宏), Fu CHANG (常福). Semi-supervised LIBS quantitative analysis method based on co-training regression model with selection of effective unlabeled samples[J]. Plasma Science and Technology, 2019, 21(3): 34015-034015. DOI: 10.1088/2058-6272/aaee14 |
[6] | Congyuan PAN (潘从元), Jiao HE (何娇), Guangqian WANG (王广谦), Xuewei DU (杜学维), Yongbin LIU (刘永斌), Yahui SU (苏亚辉). An efficient procedure in quantitative analysis using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34012-034012. DOI: 10.1088/2058-6272/aaf50f |
[7] | Minchao CUI (崔敏超), Yoshihiro DEGUCHI (出口祥啓), Zhenzhen WANG (王珍珍), Seiya TANAKA (田中诚也), Min-Gyu JEON (全敏奎), Yuki FUJITA (藤田裕贵), Shengdun ZHAO (赵升吨). Remote open-path laser-induced breakdown spectroscopy for the analysis of manganese in steel samples at high temperature[J]. Plasma Science and Technology, 2019, 21(3): 34007-034007. DOI: 10.1088/2058-6272/aaeba7 |
[8] | Qingdong ZENG (曾庆栋), Fan DENG (邓凡), Zhiheng ZHU (朱志恒), Yun TANG (唐云), Boyun WANG (王波云), Yongjun XIAO (肖永军), Liangbin XIONG (熊良斌), Huaqing YU (余华清), Lianbo GUO (郭连波), Xiangyou LI (李祥友). Portable fiber-optic laser-induced breakdown spectroscopy system for the quantitative analysis of minor elements in steel[J]. Plasma Science and Technology, 2019, 21(3): 34006-034006. DOI: 10.1088/2058-6272/aadede |
[9] | WANG Shaolong (王绍龙), WANG Yangen (王阳恩), CHEN Shanjun (陈善俊), CHEN Qi (陈奇). Quantitative Analysis of Mg in Pipeline Dirt Based on Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2015, 17(8): 716-720. DOI: 10.1088/1009-0630/17/8/18 |
[10] | LIN Caishou (林才寿), MAO Li (毛莉), HUANG Ning (黄宁), AN Zhu (安竹). Simulation Study of Quantitative X-Ray Fluorescence Analysis of Ore Slurry Using Partial Least-Squares Regression[J]. Plasma Science and Technology, 2012, 14(5): 427-430. DOI: 10.1088/1009-0630/14/5/22 |
1. | Zhang, D., Chen, Z., Nie, J. et al. A novel spectral standardization method capable of eliminating the influence of plasma morphology to improve LIBS performance. Journal of Analytical Atomic Spectrometry, 2024, 39(10): 2402-2408. DOI:10.1039/d4ja00203b | |
2. | Zhao, S., Zhao, Y., Dai, Y. et al. Methods for optimization of the original signal in laser induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2024. DOI:10.1016/j.sab.2024.106982 | |
3. | Jia, W., Zhang, Z., Shan, Q. et al. Determination of Molybdenum in Geological Ores by Laser-Induced Breakdown Spectroscopy (LIBS) with Support Vector Machine Regression (SVMR) and Data Preprocessing. Analytical Letters, 2024, 57(13): 2004-2017. DOI:10.1080/00032719.2023.2284216 | |
4. | Fu, H., Wang, H., Zhang, M. et al. Effect of lens-to-sample distance on spatial uniformity and emission spectrum of flat-top laser-induced plasma. Plasma Science and Technology, 2022, 24(8): 084005. DOI:10.1088/2058-6272/ac6b8e | |
5. | Guo, L.-B., Zhang, D., Sun, L.-X. et al. Development in the application of laser-induced breakdown spectroscopy in recent years: A review. Frontiers of Physics, 2021, 16(2): 22500. DOI:10.1007/s11467-020-1007-z | |
6. | Liu, J.-M., Wu, D., Li, C. et al. Quantitative analysis of the nickel base alloy by laser-induced breakdown spectroscopy in high vacuum environment | [高真空环境下激光诱导击穿光谱技术对镍基合金的定量分析研究]. Yejin Fenxi/Metallurgical Analysis, 2020, 40(12): 79-85. DOI:10.13228/j.boyuan.issn1000-7571.011204 | |
7. | Maurya, G.S., Marín-Roldán, A., Veis, P. et al. A review of the LIBS analysis for the plasma-facing components diagnostics. Journal of Nuclear Materials, 2020. DOI:10.1016/j.jnucmat.2020.152417 | |
8. | Wang, G., Sun, L., Wang, W. et al. A feature selection method combined with ridge regression and recursive feature elimination in quantitative analysis of laser induced breakdown spectroscopy. Plasma Science and Technology, 2020, 22(7): 074002. DOI:10.1088/2058-6272/ab76b4 | |
9. | Carter, S., Clough, R., Fisher, A. et al. Atomic spectrometry update: Review of advances in the analysis of metals, chemicals and materials. Journal of Analytical Atomic Spectrometry, 2019, 34(11): 2159-2216. DOI:10.1039/c9ja90058f | |
10. | Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873 |