Advanced Search+
Yaxiong HE, Tao XU, Yong ZHANG, Chuan KE, Yong ZHAO, Shu LIU. Quantitative analysis and time-resolved characterization of simulated tokamak exhaust gas by laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2022, 24(4): 045506. DOI: 10.1088/2058-6272/ac45e4
Citation: Yaxiong HE, Tao XU, Yong ZHANG, Chuan KE, Yong ZHAO, Shu LIU. Quantitative analysis and time-resolved characterization of simulated tokamak exhaust gas by laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2022, 24(4): 045506. DOI: 10.1088/2058-6272/ac45e4

Quantitative analysis and time-resolved characterization of simulated tokamak exhaust gas by laser-induced breakdown spectroscopy

More Information
  • Corresponding author:

    Tao XU, E-mail: xutao_ct@aliyun.com

    Yong ZHAO, E-mail: zhaoyong@fjnu.edu.cn

  • Received Date: August 19, 2021
  • Revised Date: December 19, 2021
  • Accepted Date: December 21, 2021
  • Available Online: December 15, 2023
  • Published Date: April 05, 2022
  • Tokamak exhaust is an important part of the deuterium-tritium fuel cycle system in fusion reactions. In this work, we present a laser-induced breakdown spectroscopy (LIBS)-based method to monitor the gas compositions from the exhaust system in the tokamak device. Helium (He), a main impurity in the exhaust gas, was mixed with hydrogen (H2) in different ratios through a self-designed gas distribution system, and sealed into a measurement chamber as a standard specimen. A 532 nm wavelength laser pulse with an output power of 100 mJ was used for plasma excitation. The time-resolved LIBS is used to study the time evolution characteristics of the signal strength, signal-to-background ratio (SBR), signal-to-noise ratio (SNR) and relative standard deviation (RSD) of the helium and hydrogen characteristic lines. The Boltzmann two-line method was employed to estimate the plasma temperature of laser-induced plasma (LIP). The Stark-broadened profile of He I 587.56 nm was exploited to measure the electron density. From these studies, an appropriate time was determined in which the low RSD% was consistent with the high signal-to-noise ratio. The He I 587.56 nm and Hα emission lines with good signal-to-noise ratio were extracted from the spectrum and used in the external standard method and internal standard method for quantitative analysis. The test results for mixed gas showed that the average relative error of prediction was less than 11.15%, demonstrating the great potential of LIBS in detecting impurities in plasma exhaust gas.

  • This work is supported by the National Key R&D Program of China (Nos. 2017YFE0301506 and 2017YFE0301306).

  • [1]
    Freidberg J P 2008 Plasma Physics and Fusion Energy (Cambridge: Cambridge University Press)
    [2]
    Zhao D Y et al 2018 Rev. Sci. Instrum. 89 073501 doi: 10.1063/1.5024848
    [3]
    Almaviva S et al 2021 Fusion Eng. Des. 169 112638 doi: 10.1016/j.fusengdes.2021.112638
    [4]
    Huber A et al 2011 Fusion Eng. Des. 86 1336 doi: 10.1016/j.fusengdes.2011.01.090
    [5]
    Glugla M et al 2007 Fusion Eng. Des. 82 472 doi: 10.1016/j.fusengdes.2007.02.025
    [6]
    Yuan J S et al 2020 Chin. J. Vac. Sci. Technol. 40 775(in Chinese)
    [7]
    Lässer R et al 2001 Fusion Eng. Des. 58–59 411 doi: 10.1016/S0920-3796(01)00473-2
    [8]
    Lässer R et al 2002 Fusion Sci. Technol. 41 520 doi: 10.13182/FST02-A22643
    [9]
    Babineau D et al 2010 Review of the ITER fuel cycle Proc. of 23rd IAEA Fusion Energy Conf. (Daejeon) (IAEA)
    [10]
    Tanabe T 2013 J. Nucl. Mater. 438 S19 doi: 10.1016/j.jnucmat.2013.01.284
    [11]
    Day C et al 2016 Fusion Eng. Des. 109–111 299 doi: 10.1016/j.fusengdes.2016.03.008
    [12]
    Petrov D V, Matrosov I I and Zaripov A R 2018 J. Mol. Spectrosc. 348 137 doi: 10.1016/j.jms.2018.01.001
    [13]
    Hahn D W and Omenetto N 2012 Appl. Spectrosc. 66 347 doi: 10.1366/11-06574
    [14]
    Cui X T et al 2021 Plasma Sci. Technol. 23 055505 doi: 10.1088/2058-6272/abf1ac
    [15]
    Hou Z Y et al 2020 Plasma Sci. Technol. 22 070101 doi: 10.1088/2058-6272/ab95f7
    [16]
    Sheta S et al 2019 J. Anal. At. Spectrom. 34 1047 doi: 10.1039/C9JA00016J
    [17]
    Yao S C et al 2020 Waste Manag. 102 492 doi: 10.1016/j.wasman.2019.11.010
    [18]
    Guo L B et al 2021 Front. Phys. 16 22500 doi: 10.1007/s11467-020-1007-z
    [19]
    Zhao D Y et al 2018 Plasma Sci. Technol. 20 014022 doi: 10.1088/2058-6272/aa96a0
    [20]
    Maurya G S et al 2020 J. Nucl. Mater. 541 152417 doi: 10.1016/j.jnucmat.2020.152417
    [21]
    Li C et al 2016 Front. Phys. 11 114214 doi: 10.1007/s11467-016-0606-1
    [22]
    Kramida A 2018 NIST Atomic Spectra Database (Version 5.9)
    [23]
    Smith P L Atomic spectral line database from CD-ROM 23 of R. L. Kurucz. https://cfa.harvard.edu/amp/ampdata/kurucz23/sekur.html
    [24]
    Hanafi M, Omar M M and Gamal Y E E D 2000 Radiat. Phys. Chem. 57 11 doi: 10.1016/S0969-806X(99)00344-8
    [25]
    McNaghten E D et al 2009 Spectrochim. Acta Part B: At. Spectrosc. 64 1111 doi: 10.1016/j.sab.2009.07.011
    [26]
    Lin Z et al 2010 Appl. Opt. 49 C80 doi: 10.1364/AO.49.000C80
    [27]
    Wu D et al 2021 J. Anal. At. Spectrom. 36 1159 doi: 10.1039/D1JA00009H
    [28]
    El Haddad J, Canioni L and Bousquet B 2014 Spectrochim. Acta Part B: At. Spectrosc. 101 171 doi: 10.1016/j.sab.2014.08.039
    [29]
    Fu Y T et al 2019 Spectrochim. Acta Part B: At. Spectrosc. 155 67 doi: 10.1016/j.sab.2019.03.007
    [30]
    Cooper J 1966 Rep. Prog. Phys. 29 35 doi: 10.1088/0034-4885/29/1/302
    [31]
    Xu T et al 2016 Spectrochim. Acta Part B: At. Spectrosc. 121 28 doi: 10.1016/j.sab.2016.05.005
    [32]
    Griem H R 1974 Spectral Line Broadening by Plasmas (New York: Academic)
    [33]
    Eseller K E et al 2012 Appl. Opt. 51 B171 doi: 10.1364/AO.51.00B171
    [34]
    Suyanto H et al 2016 AIP Adv. 6 085105 doi: 10.1063/1.4960991
    [35]
    Joseph M R, Xu N and Majidi V 1994 Spectrochim. Acta Part B: At. Spectrosc. 49 89 doi: 10.1016/0584-8547(94)80158-4
    [36]
    Ready J F 1971 Effects of High-Power Laser Radiation(New York: Academic)
    [37]
    Kirkbright G F, Sargent M and Vetter S 1970 Spectrochim. Acta Part B: At. Spectrosc. 25 465 doi: 10.1016/0584-8547(70)80049-0
    [38]
    Litvak M M and Edwards D F 1966 J. Appl. Phys. 37 4462 doi: 10.1063/1.1708062
    [39]
    Cristoforetti G et al 2010 Spectrochim. Acta Part B: At. Spectrosc. 65 86 doi: 10.1016/j.sab.2009.11.005
    [40]
    Zhang Y et al 2016 Appl. Opt. 55 2741 doi: 10.1364/AO.55.002741
  • Related Articles

    [1]Shoujie LI, Ronger ZHENG, Yoshihiro DEGUCHI, Wangquan YE, Ye TIAN, Jinjia GUO, Ying LI, Yuan LU. Spectra-assisted laser focusing in quantitative analysis of laser-induced breakdown spectroscopy for copper alloys[J]. Plasma Science and Technology, 2023, 25(4): 045510. DOI: 10.1088/2058-6272/aca5f4
    [2]Yaguang MEI (梅亚光), Shusen CHENG (程树森), Zhongqi HAO (郝中骐), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Xiaoyan ZENG (曾晓雁), Junliang GE (葛军亮). Quantitative analysis of steel and iron by laser-induced breakdown spectroscopy using GA-KELM[J]. Plasma Science and Technology, 2019, 21(3): 34020-034020. DOI: 10.1088/2058-6272/aaf6f3
    [3]Liuyang ZHAN (詹浏洋), Xiaohong MA (马晓红), Weiqi FANG (方玮骐), Rui WANG (王锐), Zesheng LIU (刘泽生), Yang SONG (宋阳), Huafeng ZHAO (赵华凤). A rapid classification method of aluminum alloy based on laser-induced breakdown spectroscopy and random forest algorithm[J]. Plasma Science and Technology, 2019, 21(3): 34018-034018. DOI: 10.1088/2058-6272/aaf7bf
    [4]Jiamin LIU (刘佳敏), Ding WU (吴鼎), Cailong FU (付彩龙), Ran HAI (海然), Xiao YU (于潇), Liying SUN (孙立影), Hongbin DING (丁洪斌). Improvement of quantitative analysis of molybdenum element using PLS-based approaches for laser-induced breakdown spectroscopy in various pressure environments[J]. Plasma Science and Technology, 2019, 21(3): 34017-034017. DOI: 10.1088/2058-6272/aaf821
    [5]Qingdong ZENG (曾庆栋), Fan DENG (邓凡), Zhiheng ZHU (朱志恒), Yun TANG (唐云), Boyun WANG (王波云), Yongjun XIAO (肖永军), Liangbin XIONG (熊良斌), Huaqing YU (余华清), Lianbo GUO (郭连波), Xiangyou LI (李祥友). Portable fiber-optic laser-induced breakdown spectroscopy system for the quantitative analysis of minor elements in steel[J]. Plasma Science and Technology, 2019, 21(3): 34006-034006. DOI: 10.1088/2058-6272/aadede
    [6]Li FANG (方丽), Nanjing ZHAO (赵南京), Mingjun MA (马明俊), Deshuo MENG (孟德硕), Yao JIA (贾尧), Xingjiu HUANG (黄行九), Wenqing LIU (刘文清), Jianguo LIU (刘建国). Detection of heavy metals in water samples by laser-induced breakdown spectroscopy combined with annular groove graphite flakes[J]. Plasma Science and Technology, 2019, 21(3): 34002-034002. DOI: 10.1088/2058-6272/aae7dc
    [7]Dan LUO (罗丹), Ying LIU (刘英), Xiangyu LI (李香宇), Zhenyang ZHAO (赵珍阳), Shigong WANG (王世功), Yong ZHANG (张勇). Quantitative analysis of C, Si, Mn, Ni, Cr and Cu in low-alloy steel under ambient conditions via laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2018, 20(7): 75504-075504. DOI: 10.1088/2058-6272/aabc5d
    [8]Yangmin GUO (郭阳敏), Yun TANG (唐云), Yu DU (杜宇), Shisong TANG (唐仕松), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Yongfeng LU (陆永枫), Xiaoyan ZENG (曾晓雁). Cluster analysis of polymers using laser-induced breakdown spectroscopy with K-means[J]. Plasma Science and Technology, 2018, 20(6): 65505-065505. DOI: 10.1088/2058-6272/aaaade
    [9]GUO Guangmeng (郭广盟), WANG Jie (王杰), BIAN Fang (边访), TIAN Di (田地), FAN Qingwen (樊庆文). A Hydrogel’s Formation Device for Quick Analysis of Liquid Samples Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(6): 661-665. DOI: 10.1088/1009-0630/18/6/13
    [10]HE Li’ao (何力骜), WANG Qianqian (王茜蒨), ZHAO Yu (赵宇), LIU Li (刘莉), PENG Zhong (彭中). Study on Cluster Analysis Used with Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(6): 647-653. DOI: 10.1088/1009-0630/18/6/11
  • Cited by

    Periodical cited type(3)

    1. Jin, X., Yang, G., Sun, X. et al. Discrimination of rocks by laser-induced breakdown spectroscopy combined with Random Forest (RF). Journal of Analytical Atomic Spectrometry, 2022, 38(1): 243-252. DOI:10.1039/d2ja00290f
    2. Carter, S., Clough, R., Fisher, A. et al. Atomic spectrometry update: Review of advances in the analysis of metals, chemicals and materials. Journal of Analytical Atomic Spectrometry, 2019, 34(11): 2159-2216. DOI:10.1039/c9ja90058f
    3. Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873

    Other cited types(0)

Catalog

    Figures(9)  /  Tables(3)

    Article views (93) PDF downloads (51) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return