Advanced Search+
Qingdong ZENG (曾庆栋), Fan DENG (邓凡), Zhiheng ZHU (朱志恒), Yun TANG (唐云), Boyun WANG (王波云), Yongjun XIAO (肖永军), Liangbin XIONG (熊良斌), Huaqing YU (余华清), Lianbo GUO (郭连波), Xiangyou LI (李祥友). Portable fiber-optic laser-induced breakdown spectroscopy system for the quantitative analysis of minor elements in steel[J]. Plasma Science and Technology, 2019, 21(3): 34006-034006. DOI: 10.1088/2058-6272/aadede
Citation: Qingdong ZENG (曾庆栋), Fan DENG (邓凡), Zhiheng ZHU (朱志恒), Yun TANG (唐云), Boyun WANG (王波云), Yongjun XIAO (肖永军), Liangbin XIONG (熊良斌), Huaqing YU (余华清), Lianbo GUO (郭连波), Xiangyou LI (李祥友). Portable fiber-optic laser-induced breakdown spectroscopy system for the quantitative analysis of minor elements in steel[J]. Plasma Science and Technology, 2019, 21(3): 34006-034006. DOI: 10.1088/2058-6272/aadede

Portable fiber-optic laser-induced breakdown spectroscopy system for the quantitative analysis of minor elements in steel

Funds: This work was supported by National Natural Science Foundation of China (Grant Nos. 61705064 & 11647122), the Natural Science Foundation of Hubei Province (Grant Nos. 2018CFB773 & 2018CFB672), and the Project of the Hubei Provincial Department of Education (Grant No. T201617).
More Information
  • Received Date: May 16, 2018
  • In this paper, we developed a portable laser-induced breakdown spectroscopy (LIBS) using an optical fiber to deliver laser energy and used it to quantitatively analyze minor elements in steel. The R2 factors of calibration curves of elements Mn, Ti, V, and Cr in pig iron were 0.9965, 0.9983, 0.9963, and 0.991, respectively, and their root mean square errors of cross-validation were 0.0501, 0.0054, 0.0205, and 0.0245 wt%, respectively. Six test samples were used for the validation of the performance of the calibration curves established by the portable LIBS. The average relative errors of elements Mn, Ti, V, and Cr were 2.5%, 11.7%, 13.0%, and 5.6%, respectively. These results were comparable with most results reported in traditional LIBS in steel or other matrices. However, the portable LIBS is flexible, compact, and robust, providing a promising prospect in industrial application.
  • [1]
    Oikawa K, Sumi S I and Ishida K 1999 J. Phase Equilib. 20 215
    [2]
    Afgan M S, Hou Z Y and Wang Z 2017 J. Anal. At. Spectrom. 32 1905
    [3]
    Sturm V et al 2014 Anal. Chem. 86 9687
    [4]
    Noll R 2012 Laser-Induced Breakdown Spectroscopy (Berlin: Springer)
    [5]
    Wang Z, Dong F Z and Zhou W D 2015 Plasma Sci. Technol. 17 617
    [6]
    Wang Z Z et al 2016 Front. Phys. 11 114213
    [7]
    Singh J P and Thakur S N 2007 Laser-Induced Breakdown Spectroscopy (Amsterdam: Elsevier)
    [8]
    Cremers D A and Chinni R C 2009 Appl. Spectrosc. Rev. 44 457
    [9]
    Li X W et al 2015 Plasma Sci. Technol. 17 621
    [10]
    Hahn D W and Omenetto N 2012 Appl. Spectrosc. 66 347
    [11]
    Zhang D C et al 2015 Plasma Sci. Technol. 17 971
    [12]
    Xin Y et al 2016 Front. Phys. 11 115207
    [13]
    Guo L B et al 2016 Front. Phys. 11 115208
    [14]
    Nassef O A and Elsayed-Ali H E 2005 Spectrochim. Acta B 60 1564
    [15]
    Wang Z et al 2014 Front. Phys. 9 419
    [16]
    Guo L B et al 2013 Opt. Express 21 18188
    [17]
    Pan G et al 2015 Plasma Sci. Technol. 17 625
    [18]
    Guo Y M et al 2017 J. Anal. At. Spectrom. 32 2401
    [19]
    Yao S C et al 2015 Plasma Sci. Technol. 17 938
    [20]
    Zheng P C et al 2015 Plasma Sci. Technol. 17 664
    [21]
    Li X W et al 2015 Plasma Sci. Technol. 17 928
    [22]
    Zeng Q D et al 2015 J. Anal. At. Spectrom. 30 403
    [23]
    Davies C M et al 1995 Spectrochim. Acta B 50 1059
    [24]
    Gruber J et al 2001 Spectrochim. Acta B 56 685
    [25]
    Rai A K, Yueh F Y and Singh J P 2003 Appl. Opt. 42 2078
    [26]
    Zeng Q D et al 2016 J. Anal. At. Spectrom. 31 767
    [27]
    Cheng X et al 2017 Appl. Opt. 56 9144
    [28]
    Zhu Z H et al 2018 J. Anal. At. Spectrom. 33 205
    [29]
    Hou J J et al 2017 Opt. Express 25 23024
    [30]
    Rakovsky J et al 2014 Spectrochim. Acta B 101 269
  • Related Articles

    [1]Jingchun LI (李景春), Jiaqi DONG (董家齐), Songfen LIU (刘松芬). Effects of trapped electrons on the ion temperature gradient mode in tokamak plasmas with hollow density profiles[J]. Plasma Science and Technology, 2020, 22(5): 55101-055101. DOI: 10.1088/2058-6272/ab62e4
    [2]A A ABID, Quanming LU (陆全明), Huayue CHEN (陈华岳), Yangguang KE (柯阳光), S ALI, Shui WANG (王水). Effects of electron trapping on nonlinear electron-acoustic waves excited by an electron beam via particle-in-cell simulations[J]. Plasma Science and Technology, 2019, 21(5): 55301-055301. DOI: 10.1088/2058-6272/ab033f
    [3]Sona BANSAL, Munish AGGARWAL, Tarsem S GILL. Study of obliquely propagating electron acoustic shock waves with non-extensive electron population[J]. Plasma Science and Technology, 2019, 21(1): 15301-015301. DOI: 10.1088/2058-6272/aaead8v
    [4]Nimardeep KAUR, Kuldeep SINGH, Yashika GHAI, N S SAINI. Nonplanar dust acoustic solitary and rogue waves in an ion beam plasma with superthermal electrons and ions[J]. Plasma Science and Technology, 2018, 20(7): 74009-074009. DOI: 10.1088/2058-6272/aac37a
    [5]Yashika GHAI, Nimardeep KAUR, Kuldeep SINGH, N S SAINI. Dust acoustic shock waves in magnetized dusty plasma[J]. Plasma Science and Technology, 2018, 20(7): 74005-074005. DOI: 10.1088/2058-6272/aab491
    [6]GUO Bin (郭斌 ), SONG Zhiquan (宋执权 ), FU Peng (傅鹏 ), JIANG Li (蒋力 ), LI Jinchao (李金超), WANG Min (王敏), DONG Lin (董琳). Thermal Dissipation Modelling and Design of ITER PF Converter Alternating Current Busbar[J]. Plasma Science and Technology, 2016, 18(10): 1049-1054. DOI: 10.1088/1009-0630/18/10/14
    [7]Apul N. DEV, Manoj K. DEKA, Rajesh SUBEDI, Jnanjyoti SARMA. Dust Acoustic Compressive Waves in a Warm Dusty Plasma Having Non-Thermal Ions and Non-Isothermal Electrons[J]. Plasma Science and Technology, 2015, 17(9): 721-727. DOI: 10.1088/1009-0630/17/9/01
    [8]ZHU Zhenni(朱珍妮), WU Zhengwei(吴征威), LI Chunhua(李春华), YANG Weihong(杨维纮). Electron Acoustic Solitary Waves in Magnetized Quantum Plasma with Relativistic Degenerated Electrons[J]. Plasma Science and Technology, 2014, 16(11): 995-999. DOI: 10.1088/1009-0630/16/11/01
    [9]ZHANG Shuangxi(张双喜), GAO Zhe(高喆), WU Wentao(武文韬), QIU Zhiyong(仇志勇). Damping of Geodesic Acoustic Mode by Trapped Electrons[J]. Plasma Science and Technology, 2014, 16(7): 650-656. DOI: 10.1088/1009-0630/16/7/04
    [10]S. Ahmadi ABRISHAMI, M. Nouri KADIJANI. Nonlinear Dust Acoustic Waves in a Magnetized Dusty Plasma with Trapped and Superthermal Electrons[J]. Plasma Science and Technology, 2014, 16(6): 545-551. DOI: 10.1088/1009-0630/16/6/01

Catalog

    Article views (146) PDF downloads (254) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return