Advanced Search+
Shoujie LI, Ronger ZHENG, Yoshihiro DEGUCHI, Wangquan YE, Ye TIAN, Jinjia GUO, Ying LI, Yuan LU. Spectra-assisted laser focusing in quantitative analysis of laser-induced breakdown spectroscopy for copper alloys[J]. Plasma Science and Technology, 2023, 25(4): 045510. DOI: 10.1088/2058-6272/aca5f4
Citation: Shoujie LI, Ronger ZHENG, Yoshihiro DEGUCHI, Wangquan YE, Ye TIAN, Jinjia GUO, Ying LI, Yuan LU. Spectra-assisted laser focusing in quantitative analysis of laser-induced breakdown spectroscopy for copper alloys[J]. Plasma Science and Technology, 2023, 25(4): 045510. DOI: 10.1088/2058-6272/aca5f4

Spectra-assisted laser focusing in quantitative analysis of laser-induced breakdown spectroscopy for copper alloys

More Information
  • Corresponding author:

    Yuan LU, E-mail: luyuan@ouc.edu.cn

  • Received Date: August 17, 2022
  • Revised Date: November 22, 2022
  • Accepted Date: November 23, 2022
  • Available Online: December 05, 2023
  • Published Date: February 07, 2023
  • Laser-induced breakdown spectroscopy (LIBS) is a capable technique for elementary analysis, while LIBS quantitation is still under development. In quantitation, precise laser focusing plays an important role because it ensures the distance between the laser and samples. In the present work, we employed spectral intensity as a direct way to assist laser focusing in LIBS quantitation for copper alloys. It is found that both the air emission and the copper line could be used to determine the position of the sample surface by referencing the intensity maximum. Nevertheless, the fine quantitation was only realized at the position where the air emission (e.g. O (I) 777.4 nm) reached intensity maximum, and also in this way, a repeatable quantitation was successfully achieved even after 120 days. The results suggested that the LIBS quantitation was highly dependent on the focusing position of the laser, and spectra-assisted focusing could be a simple way to find the identical condition for different samples' detection. In the future, this method might be applicable in field measurements for LIBS analysis of solids.

  • This study was financially supported by the Provincial Key Research and Development Program of Shandong, China (No. 2019GHZ010), the Natural Science Foundation of Shandong Province (No. ZR2020MF123), National Natural Science Foundation of China (Nos. 61975190 and 12174359), and the Fundamental Research Funds for the Central Universities (No. 202161002).

  • [1]
    Xue B Y et al 2020 J. Anal. At. Spectrom. 35 2880 doi: 10.1039/D0JA00139B
    [2]
    Xu W P et al 2019 J. Anal. At. Spectrom. 34 1018 doi: 10.1039/C8JA00359A
    [3]
    Wiens R C et al 2013 Spectrochim. Acta B 82 1 doi: 10.1016/j.sab.2013.02.003
    [4]
    Sobron P, Wang A L and Sobron F 2012 Spectrochim. Acta B 68 1 doi: 10.1016/j.sab.2012.01.002
    [5]
    Li N et al 2021 J. Anal. At. Spectrom. 36 2660 doi: 10.1039/D1JA00266J
    [6]
    Thornton B et al 2015 Deep-Sea. Res. Pt. I 95 20 doi: 10.1016/j.dsr.2014.10.006
    [7]
    Yoshino S et al 2018 Spectrochim. Acta B 145 1 doi: 10.1016/j.sab.2018.03.015
    [8]
    Xu W J et al 2020 J. Anal. At. Spectrom. 35 1641 doi: 10.1039/D0JA00157K
    [9]
    Cui M C et al 2019 Plasma Sci. Technol. 21 034007 doi: 10.1088/2058-6272/aaeba7
    [10]
    Dong F Z et al 2012 Front. Phys. 7 679 doi: 10.1007/s11467-012-0263-y
    [11]
    Wang Y et al 2016 Plasma Sci. Technol. 18 1192 doi: 10.1088/1009-0630/18/12/09
    [12]
    Singh V K et al 2018 Biophys. Rev. 10 1221 doi: 10.1007/s12551-018-0465-9
    [13]
    Zhang D et al 2019 Plasma Sci. Technol. 21 034009 doi: 10.1088/2058-6272/aaec9b
    [14]
    Jiang Z H et al 2018 Plasma Sci. Technol. 20 085503 doi: 10.1088/2058-6272/aabc5e
    [15]
    Guo J et al 2017 J. Anal. At. Spectrom. 32 367 doi: 10.1039/C6JA00396F
    [16]
    Wang Q Y et al 2022 Opt. Laser Technol. 122 105862 doi: 10.1016/j.optlastec.2019.105862
    [17]
    Jolivet L et al 2019 Spectrochim. Acta B 151 41 doi: 10.1016/j.sab.2018.11.008
    [18]
    Li C et al 2021 Biomed. Opt. Express 12 5214 doi: 10.1364/BOE.427099
    [19]
    Wei W et al 2019 Plasma Sci. Technol. 21 034004 doi: 10.1088/2058-6272/aae383
    [20]
    Motto-Ros V et al 2014 Spectrochim. Acta B 92 60 doi: 10.1016/j.sab.2013.12.008
    [21]
    Alvarez-Llamas C et al 2022 Anal. Chem. 94 1840 doi: 10.1021/acs.analchem.1c04792
    [22]
    Chide B et al 2019 Spectrochim. Acta B 153 50 doi: 10.1016/j.sab.2019.01.008
    [23]
    Li Q Y et al 2020 J. Anal. At. Spectrom. 35 366 doi: 10.1039/C9JA00367C
    [24]
    Beresko C, Kohns P and Ankerhold G 2014 Spectrochim. Acta B 99 20 doi: 10.1016/j.sab.2014.06.004
    [25]
    He C J et al 2022 Spectrochim. Acta B 188 106340 doi: 10.1016/j.sab.2021.106340
    [26]
    Cortez J et al 2017 Appl. Spectrosc. 71 634 doi: 10.1177/0003702816687571
    [27]
    Levoy M et al 2006 ACM Trans. Graph. 25 924 doi: 10.1145/1141911.1141976
    [28]
    Lim Y T et al 2012 Opt. Express 20 23480 doi: 10.1364/OE.20.023480
    [29]
    Mao X L and Russo R E 1996 Appl. Phys. A 64 1 doi: 10.1007/s003390050437
  • Related Articles

    [1]You HE, Yeong-Min LIM, Jun-Ho LEE, Ju-Ho KIM, Moo-Young LEE, Chin-Wook CHUNG. Effect of parallel resonance on the electron energy distribution function in a 60 MHz capacitively coupled plasma[J]. Plasma Science and Technology, 2023, 25(4): 045401. DOI: 10.1088/2058-6272/ac9b9f
    [2]Min ZHU (朱敏), Chao YE (叶超), Xiangying WANG (王响英), Amin JIANG (蒋阿敏), Su ZHANG (张苏). Effect of radio-frequency substrate bias on ion properties and sputtering behavior of 2 MHz magnetron sputtering[J]. Plasma Science and Technology, 2019, 21(1): 15507-015507. DOI: 10.1088/2058-6272/aae7dd
    [3]Liang SONG (宋亮), Xianping WANG (王先平), Le WANG (王乐), Ying ZHANG (张营), Wang LIU (刘旺), Weibing JIANG (蒋卫斌), Tao ZHANG (张涛), Qianfeng FANG (方前锋), Changsong LIU (刘长松). Fabrication and characterization of He-charged ODS-FeCrNi films deposited by a radio-frequency plasma magnetron sputtering technique[J]. Plasma Science and Technology, 2017, 19(4): 45502-045502. DOI: 10.1088/2058-6272/aa57f0
    [4]JIN Yizhou (金逸舟), YANG Juan (杨涓), TANG Mingjie (汤明杰), LUO Litao (罗立涛), FENG Bingbing (冯冰冰). Diagnosing the Fine Structure of Electron Energy Within the ECRIT Ion Source[J]. Plasma Science and Technology, 2016, 18(7): 744-750. DOI: 10.1088/1009-0630/18/7/08
    [5]LIU Yi (刘毅), YE Chao (叶超), HE Haijie (何海杰), WANG Xiangying (王响英). Effect of Frequency and Power of Bias Applied to Substrate on Plasma Property of Very-High-Frequency Magnetron Sputtering[J]. Plasma Science and Technology, 2015, 17(7): 583-588. DOI: 10.1088/1009-0630/17/7/10
    [6]GAO Huanzhong (高欢忠), HE Long (何龙), HE Zhijiang (何志江), LI Zebin (李泽斌), et al.. Work Function Enhancement of Indium Tin Oxide via Oxygen Plasma Immersion Ion Implantation[J]. Plasma Science and Technology, 2013, 15(8): 791-793. DOI: 10.1088/1009-0630/15/8/14
    [7]Umm-i-KALSOOM, R. AHMAD, Nisar ALI, I. A. KHAN, Sehrish SALEEM, Uzma IKHLAQ, et al. Effect of Power and Nitrogen Content on the Deposition of CrN Films by Using Pulsed DC Magnetron Sputtering Plasma[J]. Plasma Science and Technology, 2013, 15(7): 666-672. DOI: 10.1088/1009-0630/15/7/12
    [8]LU Wenqi (陆文琪), JIANG Xiangzhan (蒋相站), LIU Yongxin (刘永新), YANG Shuo (杨烁), et al. Improved Double-Probe Technique for Spatially Resolved Diagnosis of Dual-Frequency Capacitive Plasmas[J]. Plasma Science and Technology, 2013, 15(6): 511-515. DOI: 10.1088/1009-0630/15/6/05
    [9]PANG Jianhua (庞见华), LU Wenqi (陆文琪), XIN Yu (辛煜), WANG Hanghang (王行行), HE Jia (贺佳), XU Jun (徐军). Plasma Diagnosis for Microwave ECR Plasma Enhanced Sputtering Deposition of DLC Films[J]. Plasma Science and Technology, 2012, 14(2): 172-176. DOI: 10.1088/1009-0630/14/2/17
    [10]RU Lili (汝丽丽), HUANG Jianjun (黄建军), GAO Liang (高亮), QI Bing (齐冰). Influence of Microwave Power on the Properties of Hydrogenated Diamond-Like Carbon Films Prepared by ECR Plasma Enhanced DC Magnetron Sputtering[J]. Plasma Science and Technology, 2010, 12(5): 551-555.
  • Cited by

    Periodical cited type(20)

    1. Wang, L., Zhao, H., Han, Z. et al. Numerical simulation of He atmospheric pressure plasma jet impinging on the tilted dielectric surface. Journal of Applied Physics, 2024, 136(11): 113302. DOI:10.1063/5.0232639
    2. Yang, C., Geng, Y., Wang, J. EFFECT OF AIR IMPURITIES ON THE CHARACTERISTICS OF HELIUM DISCHARGE AT HIGH TEMPERATURE AND HIGH PRESSURE. 2024. DOI:10.1115/ICONE31-135193
    3. Fang, Z., Pan, Y.-Q., Dai, D. et al. Physics-informed neural networks based on source term decoupled and its application in discharge plasma simulation | [基于源项解耦的物理信息神经网络方法及其在放电等离子体模拟中的应用]. Wuli Xuebao/Acta Physica Sinica, 2024, 73(14): 145201. DOI:10.7498/aps.73.20240343
    4. Yang, D., Chen, J., Duan, Z. et al. Simulation analysis on microscopic discharge characteristics of the bipolar corona of a floating conductor. Plasma Science and Technology, 2023, 25(8): 085402. DOI:10.1088/2058-6272/acc16e
    5. Liu, K., Fang, Z., Dai, D. Numerical study on uniformity of atmospheric helium gas dielectric barrier discharge on non-smooth surface regulated by sinusoidal clipping voltage | [正弦削波电压调控大气压氦气非平滑表面介质阻挡放电均匀性的仿真研究]. Wuli Xuebao/Acta Physica Sinica, 2023, 72(13): 135201. DOI:10.7498/aps.72.20230385
    6. Ning, W., Li, R., Shen, X. et al. Simulation of the Discharges in Millimetre Gap Driven by Radio-frequency and Kilohertz AC Voltages | [射 频 和 千 赫 兹 驱 动 的 毫 米 间 隙 放 电 的 仿 真 研 究]. Gongcheng Kexue Yu Jishu/Advanced Engineering Sciences, 2023, 55(4): 38-46. DOI:10.15961/j.jsuese.202200996
    7. Huo, W., Lin, J., Yu, T. et al. Numerical studies on the influences of gas temperature on atmospheric-pressure helium dielectric barrier discharge characteristics. Plasma Science and Technology, 2023, 25(5): 055402. DOI:10.1088/2058-6272/aca9a7
    8. Yang, C., Geng, Y., Wang, J. Influence of nitrogen impurities on the characteristics of helium discharge at high pressure. Annals of Nuclear Energy, 2022. DOI:10.1016/j.anucene.2022.109024
    9. Liu, F., Zhuang, Y., Zhao, Y. et al. Effects of O2addition on the plasma uniformity and reactivity of Ar DBD excited by ns pulsed and AC power supplies. Plasma Science and Technology, 2022, 24(5): 054004. DOI:10.1088/2058-6272/ac41c1
    10. Wang, S., Song, P., Pei, H. et al. Numerical Simulation and Experimental Study of Ar/CH4 Coaxial DBD Discharge Characteristics. Advances in Transdisciplinary Engineering, 2022. DOI:10.3233/ATDE220025
    11. Luo, B., Wang, J., Dai, D. et al. Partial discharge simulation of air gap defects in oil-paper insulation paperboard of converter transformer under different ratios of ac–dc combined voltage. Energies, 2021, 14(21): 6995. DOI:10.3390/en14216995
    12. Zhao, L., Ji, Y., Shang, H. et al. Propagation Mechanism of a Positive DC Driven Atmospheric Pressure Helium Plasma Jet: Influences of He-air Mixing Layer | [正极性直流驱动大气压氦气等离子体射流的传播机制: 氦气-空气混合层的影响]. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2021, 41(17): 6090-6099. DOI:10.13334/j.0258-8013.pcsee.202583
    13. Yang, C.-P., Geng, Y.-N., Wang, J. et al. Breakdown voltage of high pressure helium parallel plates and effect of field emission | [高气压氦气平行极板击穿电压及场致发射的影响]. Wuli Xuebao/Acta Physica Sinica, 2021, 70(13): 135102. DOI:10.7498/aps.70.20210086
    14. Wang, Q., Zhou, X., Dai, D. et al. Nonlinear feature in the spatial uniformity of an atmospheric helium dielectric barrier discharge with the inter-dielectric gap width enlarged. Plasma Sources Science and Technology, 2021, 30(5): 05LT01. DOI:10.1088/1361-6595/abf75e
    15. Wang, Q., Dai, D., Ning, W. et al. Atmospheric dielectric barrier discharge containing helium-air mixtures: The effect of dry air impurities on the spatial discharge behavior. Journal of Physics D: Applied Physics, 2021, 54(11): 115203. DOI:10.1088/1361-6463/abcdd1
    16. LIU, Y., WANG, S., ZHOU, R. et al. Development of a battery-operated floatingelectrode dielectric barrier discharge plasma device and its characteristics. Plasma Science and Technology, 2021, 23(6): 064008. DOI:10.1088/2058-6272/abed2e
    17. Huang, Z., Zhang, Y., Dai, D. et al. Controlling the number of discharge current pulses in an atmospheric dielectric barrier discharge by voltage waveform tailoring. AIP Advances, 2021, 11(1): 015203. DOI:10.1063/5.0033571
    18. Wang, Q., Ning, W., Dai, D. et al. How does the moderate wavy surface affect the discharge behavior in an atmospheric helium dielectric barrier discharge model?. Plasma Processes and Polymers, 2020, 17(2): 1900182. DOI:10.1002/ppap.201900182
    19. Luo, L., Huang, Z., Wang, Q. et al. Influence of oxygen on the multiple-current-pulse behavior in an atmospheric homogeneous helium dielectric barrier discharge with air impurities. IEEE Access, 2020. DOI:10.1109/ACCESS.2020.2964653
    20. Liu, F., Guo, X., Zhou, Z. et al. Numerical simulations of the effects of the level of nitrogen impurities in atmospheric helium Townsend discharge. Physics of Plasmas, 2019, 26(12): 123502. DOI:10.1063/1.5125294

    Other cited types(0)

Catalog

    Figures(6)

    Article views (54) PDF downloads (34) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return