Advanced Search+
Jiao PENG (彭姣), Rong YAN (鄢容), Rui DING (丁锐), Junling CHEN (陈俊凌), Dahuan ZHU (朱大焕), Zengming ZHANG (张增明). Repetitive cleaning of a stainless steel first mirror using radio frequency plasma[J]. Plasma Science and Technology, 2017, 19(10): 105601. DOI: 10.1088/2058-6272/aa7629
Citation: Jiao PENG (彭姣), Rong YAN (鄢容), Rui DING (丁锐), Junling CHEN (陈俊凌), Dahuan ZHU (朱大焕), Zengming ZHANG (张增明). Repetitive cleaning of a stainless steel first mirror using radio frequency plasma[J]. Plasma Science and Technology, 2017, 19(10): 105601. DOI: 10.1088/2058-6272/aa7629

Repetitive cleaning of a stainless steel first mirror using radio frequency plasma

Funds: This work was supported by National Magnetic Confinement Fusion Science Program of China under Contract Nos. 2013GB105003 and 2013GB107004, National Natural Science Foundation of China under Contract Nos. 11475218, 11505231, 11375010 and 11675218.
More Information
  • Received Date: November 29, 2016
  • First mirrors (FMs) are crucial components of optical diagnostic systems in present-day tokamaks and future fusion reactors. Their lifetimes should be extremely limited due to their proximity to burning plasma, greatly influencing the safe operation of corresponding diagnostics. Repetitive cleaning is expected to provide a solution to the frequent replacement of contaminated FMs, thus prolonging their lifetimes. Three repetitive cleaning cycles using radio frequency plasma were applied to stainless steel (SS) FM samples, to evaluate the change of the mirrors’ optical properties and morphology during each cycle. Amorphous carbon films were deposited on mirror surfaces under identical conditions in three cycles. In three cycles with identical cleaning parameters, the total reflectivity was restored at up to 95%. Nevertheless, with successive cleaning cycles, the FM surfaces gradually appeared to roughen due to damage to the grain boundaries. Correspondingly, the diffuse reflectivity increased from a few percent to 20% and 27% after the second and third cycles. After optimizing the cleaning parameters of the second and third cycles, the roughness showed a significant decrease, and simultaneously the increase of diffuse reflectivity was remarkably improved.
  • [1]
    Mukhin E et al 2009 Nucl. Fusion 49 085032
    [2]
    Litnovsky A et al 2011 Fusion Eng. Des. 86 1780
    [3]
    Moser L et al 2015 J. Nucl. Mater. 463 940
    [4]
    Arkhipov I et al 2011 J. Nucl. Mater. 415 S1210
    [5]
    Moser L et al 2015 Nucl. Fusion 55 063020
    [6]
    Yan R et al 2014 Plasma Sci. Technol. 16 1158
    [7]
    Leipold F et al 2016 Rev. Sci. Instrum. 87 11D439
    [8]
    Kochergin M et al 2006 Plasma Dev. Oper. 14 171
    [9]
    Mukhin E E et al 2012 Nucl. Fusion 52 013017
    [10]
    Voitsenya V S et al 2008 AIP Conf. Proc. 993 395
    [11]
    Rudakov D L et al 2006 Rev. Sci. Instrum. 77 10F126
    [12]
    Guo H Y et al 2014 Phys. Plasmas 21 056107
    [13]
    Zhou Y et al 2006 Fusion Eng. Des. 81 2823
    [14]
    Peng J et al 2016 Fusion Eng. Des. 112 317
    [15]
    Chen J et al 2012 Plasma Sci. Technol. 14 708
    [16]
    Eren B et al 2011 Fusion Eng. Des. 86 2593
    [17]
    Voitsenya V et al 2001 Rev. Sci. Instrum. 72 475
    [18]
    Mirzadeh H et al 2012 Mater. Sci. Eng. A 538 236
    [19]
    Behrisch R et al 1976 J. Nucl. Mater. 60 321
    [20]
    Zhou L Y et al 2003 Chin. J. Mech. Eng. 16 217
  • Related Articles

    [1]Haowei ZHANG, Zhiwei MA. Validation of the current and pressure coupling schemes with nonlinear simulations of TAE and analysis on the linear stability of tearing mode in the presence of energetic particles[J]. Plasma Science and Technology, 2023, 25(4): 045105. DOI: 10.1088/2058-6272/aca6c0
    [2]Shuai JIANG, Weikang TANG, Lai WEI, Tong LIU, Haiwen XU, Zhengxiong WANG. Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas[J]. Plasma Science and Technology, 2022, 24(5): 055101. DOI: 10.1088/2058-6272/ac500b
    [3]Aohua MAO (毛傲华), Zhibin WANG (王志斌), Xianglei HE (何向磊), Xiaogang WANG (王晓钢). Nonlinear evolution and secondary island formation of the double tearing mode in a hybrid simulation[J]. Plasma Science and Technology, 2021, 23(3): 35103-035103. DOI: 10.1088/2058-6272/abe038
    [4]Yumei HOU (侯玉梅), Wei CHEN (陈伟), Yi YU (余羿), Xuru DUAN (段旭如), Min XU (许敏), Minyou YE (叶民友), HL-A Team. Study of nonlinear mode–mode couplings between Alfvénic modes by the Fourier bicoherence and Lissajous-curve technique in HL-2A[J]. Plasma Science and Technology, 2019, 21(7): 75101-075101. DOI: 10.1088/2058-6272/ab08fe
    [5]Weikang TANG (汤炜康), Lai WEI (魏来), Zhengxiong WANG (王正汹), Jialei WANG (王佳磊), Tong LIU (刘桐), Shu ZHENG (郑殊). Effects of resonant magnetic perturbation on locked mode of neoclassical tearing modes[J]. Plasma Science and Technology, 2019, 21(6): 65103-065103. DOI: 10.1088/2058-6272/ab0a18
    [6]Yun YUAN (袁赟), Xingqiang LU (路兴强), Jiaqi DONG (董家齐), Zhixiong HE (何志雄), Ruibo ZHANG (张睿博), Shijia CHEN (陈诗佳), Xueyu GONG (龚学余), Yun YUAN (袁赟), Xingqiang LU (路兴强), Jiaqi DONG (董家齐), Zhixiong HE (何志雄), Ruibo ZHANG (张睿博), Shijia CHEN (陈诗佳), Xueyu GONG (龚学余). Influence of stationary driven helical current on the m=2/n=1 resistive tearing mode[J]. Plasma Science and Technology, 2019, 21(5): 55101-055101. DOI: 10.1088/2058-6272/aafdc7
    [7]MA Jun (马骏), QIN Hong (秦宏), YU Zhi (于治), LI Dehui (李德徽). Nonlinear Simulations of Coalescence Instability Using a Flux Difference Splitting Method[J]. Plasma Science and Technology, 2016, 18(7): 714-719. DOI: 10.1088/1009-0630/18/7/03
    [8]T. S. HAHM. Ion Heating from Nonlinear Landau Damping of High Mode Number Toroidal Alfvén Eigenmodes[J]. Plasma Science and Technology, 2015, 17(7): 534-538. DOI: 10.1088/1009-0630/17/7/02
    [9]YUAN Yuan(袁媛), JIANG Zhonghe(江中和), GUO Weixin(郭伟欣), SUN Xinfeng(孙新锋), HU Xiwei(胡希伟). Mode-Coupling Analysis of Parametric Decay Instability in Magnetized Plasmas[J]. Plasma Science and Technology, 2014, 16(9): 809-814. DOI: 10.1088/1009-0630/16/9/01
    [10]WANG Lifeng (王立锋), YE Wenhua (叶文华), FAN Zhengfeng (范征锋), et al.. Nonlinear Evolution of Jet-Like Spikes from the Single-Mode Ablative Rayleigh-Taylor Instability with Preheating[J]. Plasma Science and Technology, 2013, 15(10): 961-968. DOI: 10.1088/1009-0630/15/10/01
  • Cited by

    Periodical cited type(8)

    1. Orgen, S.B., Dela Pena, E.M.B. Microstructure and Corrosion Behavior of PEO-Coated AA7075 Under Pulsed Unipolar Potential Control Mode. Coatings, 2024, 14(12): 1498. DOI:10.3390/coatings14121498
    2. Sun, S., Shang, J. Improved wear and corrosion resistance of MoS2/MgO/MgAl2O4 composite layer in-situ prepared by one-step micro-arc oxidation. Materials Today Communications, 2024. DOI:10.1016/j.mtcomm.2024.110151
    3. Hu, Q., Li, X., Ruan, Y. et al. Friction Reduction of Aluminum Alloy Micro-arc Oxidation Coating by Filling Graphene Oxide. Journal of Materials Engineering and Performance, 2024. DOI:10.1007/s11665-024-09666-2
    4. Wang, G., Song, J., Zhao, G. et al. Improving output performance of ultrasonic motor by coating MoS2 on the stator. Tribology International, 2023. DOI:10.1016/j.triboint.2023.108608
    5. Wang, S., Yu, Q., Wang, X. et al. SiO2 passivated TaS2 saturable absorber mirrors for the ultrafast pulse generation. Journal of Alloys and Compounds, 2022. DOI:10.1016/j.jallcom.2022.165742
    6. Zhu, L., Wang, Z., Li, C. et al. Highly stable 1T-MoS2 by magneto-hydrothermal synthesis with Ru modification for efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2022. DOI:10.1039/d2ta05954a
    7. Tsai, D.-S., Chou, C.-C. Influences of growth species and inclusions on the current–voltage behavior of plasma electrolytic oxidation: A review. Coatings, 2021, 11(3): 1-21. DOI:10.3390/coatings11030270
    8. Esmaeili, M., Tadayonsaidi, M., Ghorbanian, B. The effect of PEO parameters on the properties of biodegradable Mg alloys: A review. Surface Innovations, 2020, 9(4): 184-198. DOI:10.1680/jsuin.20.00057

    Other cited types(0)

Catalog

    Article views (261) PDF downloads (545) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return