Advanced Search+
Yanqin LI (李艳琴), Xiuling ZHANG (张秀玲), Lanbo DI (底兰波). Study on the properties of a ε-Fe3N-based magnetic lubricant prepared by DBD plasma[J]. Plasma Science and Technology, 2018, 20(1): 14012-014012. DOI: 10.1088/2058-6272/aa8c6d
Citation: Yanqin LI (李艳琴), Xiuling ZHANG (张秀玲), Lanbo DI (底兰波). Study on the properties of a ε-Fe3N-based magnetic lubricant prepared by DBD plasma[J]. Plasma Science and Technology, 2018, 20(1): 14012-014012. DOI: 10.1088/2058-6272/aa8c6d

Study on the properties of a ε-Fe3N-based magnetic lubricant prepared by DBD plasma

Funds: This work is supported by National Natural Science Foundation of China (Grant Nos. 11605020 and 21673026) and by the National Natural Science Foundation of Liaoning Province, China (Grant No. 2015020585).
More Information
  • The ε-Fe3N-based magnetic lubricant which is stable and high saturation magnetization has been prepared by a homemade DBD device under the atmospheric pressure. The results show that the NH3 flow rate, the applied peak-to-peak voltage and the mass ratio of surfactant and carrier lubricant have important effects on the phase structure, the magnetic properties, the size of ferroparticles and the stability of the ε-Fe3N-based magnetic lubricant. TEM images show the ε-Fe3N ferroparticles are dispersed in the carrier lubricant homogeneously, and the cluster phenomenon is not observed. The stable ε-Fe3N-based magnetic lubricant with the saturation magnetization of 50.11 mT and the mean ferroparticle size of 11 nm is prepared successfully. The main particles of the atmospheric-pressure Ar/NH3/Fe(CO)5 DBD plasma are NH, N, N+, Fe, N2, Ar, Hα, and CO; NH is a decomposition product of NH3. Fe and N active radicals are two elementary species in the preparation of the ε-Fe3N-based magnetic lubricant in the atmospheric-pressure DBD plasma. There are two discharge modes for DBD plasma, namely, multi-pulse APGD and filamentary discharge. By increasing the applied peak-to-peak voltage from 4600 to 7800 V, the discharge mode is changed from single-pulse APGD with filamentary discharge to two-pulse APGD with filamentary discharge, and the Lissajous figure also converts from a quadrilateral with one step to two steps on the right-hand side.
  • Related Articles

    [1]Lianjie MA, Debing ZHANG, Limin YU, Erbing XUE, Xianmei ZHANG, Juan HUANG, Yong XIAO, Xianzu GONG, Jinping QIAN, EAST Team. Simulation on the transition of electrostatic instabilities in EAST steady-state scenario[J]. Plasma Science and Technology, 2023, 25(5): 055103. DOI: 10.1088/2058-6272/acafc0
    [2]Hongmei DU (杜洪梅), Liping ZHANG (张丽萍), Dongao LI (李东澳). THz plasma wave instability in field effect transistor with electron diffusion current density[J]. Plasma Science and Technology, 2018, 20(11): 115001. DOI: 10.1088/2058-6272/aacaef
    [3]Jiaqi DONG (董家齐). Kinetic micro-instabilities in the presence of impurities in toroidal magnetized plasmas[J]. Plasma Science and Technology, 2018, 20(9): 94005-094005. DOI: 10.1088/2058-6272/aad4f4
    [4]Yunxiao CAO (曹云霄), Zhiqiang WANG (王志强), Jinjun WANG (王进君), Guofeng LI (李国锋). Study of talcum charging status in parallel plate electrostatic separator based on particle trajectory analysis[J]. Plasma Science and Technology, 2018, 20(5): 54019-054019. DOI: 10.1088/2058-6272/aaa195
    [5]A ABBASI, M R RASHIDIAN VAZIRI. Effect of polarization force on the Jeans instability in collisional dusty plasmas[J]. Plasma Science and Technology, 2018, 20(3): 35301-035301. DOI: 10.1088/2058-6272/aa96fa
    [6]Congxiang LU (陆从相), Chengwu YI (依成武), Rongjie YI (依蓉婕), Shiwen LIU (刘诗雯). Analysis of the operating parameters of a vortex electrostatic precipitator[J]. Plasma Science and Technology, 2017, 19(2): 25504-025504. DOI: 10.1088/2058-6272/19/2/025504
    [7]LI Dehui(李德徽), XIANG Nong(项农), LIN Yu(林郁), WANG Xueyi(汪学毅), YANG Cheng(杨程), MA Jun(马骏). Benchmark Simulations of Gyro-Kinetic Electron and Fully-Kinetic Ion Model for Lower Hybrid Waves in Linear Region[J]. Plasma Science and Technology, 2014, 16(9): 821-825. DOI: 10.1088/1009-0630/16/9/03
    [8]WU Mingyu (吴明雨), LU Quanming (陆全明), ZHU Jie (朱洁), WANG Peiran (王沛然), WANG Shui (王水). Electromagnetic Particle-in-Cell Simulations of Electron Holes Formed During the Electron Two-Stream Instability[J]. Plasma Science and Technology, 2013, 15(1): 17-24. DOI: 10.1088/1009-0630/15/1/04
    [9]SUN Yue (孙岳), CHEN Zhipeng (陈志鹏), WANG Zhijiang (王之江), ZHU Mengzhou (朱孟周), ZHUANG Ge (庄革), J-TEXT team. Experimental Studies of Electrostatic Fluctuations and Turbulent Transport in the Boundary of J-TEXT Tokamak Using Reciprocating Probe[J]. Plasma Science and Technology, 2012, 14(12): 1041-1047. DOI: 10.1088/1009-0630/14/12/02
    [10]GAO Min (高敏), CHEN Shaoyong (陈少永), TANG Changjian (唐昌建), PENG Xiaodong (彭晓东). The electromagnetic instability in electron flow with ion background[J]. Plasma Science and Technology, 2010, 12(5): 523-528.
  • Cited by

    Periodical cited type(15)

    1. Priputnev, P.V., Romanchenko, I.V., Rostov, V.V. Systems and Technologies Based on Nonlinear Transmission Lines with Ferrite (Review). Technical Physics, 2024, 69(6): 1730-1741. DOI:10.1134/S1063784224060355
    2. Cui, Y., Meng, J., Yuan, Y. et al. Principle analysis and preliminary experiment of the gyromagnetic nonlinear transmission lines | [旋磁非线性传输线原理分析和初步实验]. Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2024, 46(3): 222-228. DOI:10.11887/j.cn.202403022
    3. Zhang, W., Lin, M., Li, H. et al. Finite element analysis of pulse sharpening effect of gyromagnetic nonlinear transmission line based on Landau-Lifshitz-Gilbert equation. Review of Scientific Instruments, 2024, 95(6): 064705. DOI:10.1063/5.0203542
    4. Stephens, J., Wright, T., Saheb, D. et al. Experimental Characterization of a Genetic Algorithm-Optimized Nonlinear Transmission Line for High Power RF Generation. IEEE Transactions on Microwave Theory and Techniques, 2024. DOI:10.1109/TMTT.2024.3457311
    5. Samoylichenko, M.A.. Multiple Modal Reservation in Flexible Printed Cables. 2023. DOI:10.1109/UralCon59258.2023.10291140
    6. Jiang, J., Cao, Y., Luo, Z. et al. Simulation research on pulse steepening technology based on ferrite transmission line | [基于铁氧体传输线的脉冲陡化技术仿真研究*]. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2022, 34(9): 095005. DOI:10.11884/HPLPB202234.220092
    7. Jiang, J., Luo, Z., Cao, Y. et al. Design and Performance of a Ferrite Transmission Line Sharpener for Trigger Generator Used in FLTD. IEEE Transactions on Plasma Science, 2022, 50(9): 3113-3122. DOI:10.1109/TPS.2022.3194029
    8. Cui, Y., Meng, J., Huang, L. et al. 100-MW-Level Experiments of a Gyromagnetic Nonlinear Transmission Line System. IEEE Transactions on Electron Devices, 2022, 69(9): 5248-5255. DOI:10.1109/TED.2022.3192215
    9. Greco, A.F.G., Rossi, J.O., Barroso, J.J. et al. Analysis of the sharpening effect in gyromagnetic nonlinear transmission lines using the unidimensional form of the Landau-Lifshitz-Gilbert equation. Review of Scientific Instruments, 2022, 93(6): 065101. DOI:10.1063/5.0087452
    10. Cui, Y., Meng, J., Yuan, Y. et al. Numerical Analysis on the RF Characteristics of the Gyromagnetic Nonlinear Transmission Lines. IEEE Transactions on Plasma Science, 2022, 50(5): 1188-1197. DOI:10.1109/TPS.2022.3166898
    11. Zhu, D., Meng, J., Huang, L. et al. Simulation Research on a Compact High Power Microwave Source Based on Gyromagnetic Nonlinear Transmission Lines | [基于旋磁非线性传输线的小型化强电磁脉冲源的仿真研究]. Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2022, 44(2): 737-744. DOI:10.11999/JEIT200912
    12. Huang, L., Meng, J., Zhu, D. et al. Minimum Spatial Filling Rate of the Ferrite Required to Excite the Microwave Oscillations in the Gyromagnetic NLTL. IEEE Transactions on Plasma Science, 2022, 50(1): 23-28. DOI:10.1109/TPS.2021.3135022
    13. Cui, Y., Meng, J., Huang, L. et al. Operation analysis of the wideband high-power microwave sources based on the gyromagnetic nonlinear transmission lines. Review of Scientific Instruments, 2021, 92(3): 034702. DOI:10.1063/5.0040323
    14. Huang, L., Meng, J., Zhu, D. et al. Field-line coupling method for the simulation of gyromagnetic nonlinear transmission line based on the maxwell-LLG system. IEEE Transactions on Plasma Science, 2020, 48(11): 3847-3853. DOI:10.1109/TPS.2020.3029524
    15. Fairbanks, A.J., Darr, A.M., Garner, A.L. A Review of Nonlinear Transmission Line System Design. IEEE Access, 2020. DOI:10.1109/ACCESS.2020.3015715

    Other cited types(0)

Catalog

    Article views (219) PDF downloads (461) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return