Advanced Search+
Yunxiao ZHANG (张云霄), Yuanxiang ZHOU (周远翔), Ling ZHANG (张灵), Zhen LIN (林臻), Jie LIU (刘杰), Zhongliu ZHOU (周仲柳). Electrical treeing behaviors in silicone rubber under an impulse voltage considering high temperature[J]. Plasma Science and Technology, 2018, 20(5): 54012-054012. DOI: 10.1088/2058-6272/aaa88a
Citation: Yunxiao ZHANG (张云霄), Yuanxiang ZHOU (周远翔), Ling ZHANG (张灵), Zhen LIN (林臻), Jie LIU (刘杰), Zhongliu ZHOU (周仲柳). Electrical treeing behaviors in silicone rubber under an impulse voltage considering high temperature[J]. Plasma Science and Technology, 2018, 20(5): 54012-054012. DOI: 10.1088/2058-6272/aaa88a

Electrical treeing behaviors in silicone rubber under an impulse voltage considering high temperature

Funds: This work was supported in part by National Basic Research Program of China (973 Project)(No. 2014CB239501), National Natural Science Foundation of China (Nos. 51707100, 51377089), State Key Laboratory of Electrical Insulation and Power Equipment (No. EIPE16208), and China Postdoctoral Science Foundation (No. 2016M591176).
More Information
  • Received Date: October 28, 2017
  • In this paper, work was conducted to reveal electrical tree behaviors (initiation and propagation) of silicone rubber (SIR) under an impulse voltage with high temperature. Impulse frequencies ranging from 10 Hz to 1 kHz were applied and the temperature was controlled between 30 °C and 90 °C. Experimental results show that tree initiation voltage decreases with increasing pulse frequency, and the descending amplitude is different in different frequency bands. As the pulse frequency increases, more frequent partial discharges occur in the channel, increasing the tree growth rate and the final shape intensity. As for temperature, the initiation voltage decreases and the tree shape becomes denser as the temperature gets higher. Based on differential scanning calorimetry results, we believe that partial segment relaxation of SIR at high temperature leads to a decrease in the initiation voltage. However, the tree growth rate decreases with increasing temperature. Carbonization deposition in the channel under high temperature was observed under microscope and proven by Raman analysis. Different tree growth models considering tree channel characteristics are proposed. It is believed that increasing the conductivity in the tree channel restrains the partial discharge, holding back the tree growth at high temperature.
  • [1]
    Dissado L A 2002 IEEE Trans. Dielectr. Electr. Insul. 9 483
    [2]
    Shimizu N and Laurent C 1998 Dielectr. Electr. Insul. 5 651
    [3]
    Tiemblo P et al 2008 J. Phys. D: Appl. Phys. 41 125208
    [4]
    Vaughan A S et al 2006 J. Phys. D: Appl. Phys. 39 962
    [5]
    Shimizu N, Uchida K and Rasikawan S 1992 IEEE Trans. Dielectr. Electr. Insul. 27 513
    [6]
    Zhang Y X et al 2015 J. Electrostat. 76 83
    [7]
    Dodd S J 2003 J. Phys. D: Appl. Phys. 36 129
    [8]
    Nie Q et al 2009 Effect of frequency on electrical tree characteristics in silicone rubber Proc. of the 9th Int. Conf. on the Properties and Applications of Dielectric Materials (Harbin, China) (IEEE)p 513 (https://doi.org/10.1109/ ICPADM.2009.5252379)
    [9]
    Du B X et al 2011 IEEE Trans. Dielectr. Electr. Insul. 18 401
    [10]
    Chen X R et al 2015 IEEE Trans. Dielectr. Electr. Insul. 22 2841
    [11]
    Du B X, Han T and Su J G 2014 IEEE Trans. Dielectr. Electr. Insul. 21 1880
    [12]
    Bao M H, Yin X G and He J J 2011 Phys. B Condens. Matter 406 2885
    [13]
    Chalashkanov N M et al 2016 IEEE Trans. Dielectr. Electr. Insul. 23 3256
    [14]
    Yamano Y 2014 IEEE Trans. Dielectr. Electr. Insul. 21 209
    [15]
    Liu Y and Cao X L 2013 IEEE Trans. Dielectr. Electr. Insul. 20 1691
    [16]
    Tanaka T 2001 IEEE Trans. Dielectr. Electr. Insul. 8 733
    [17]
    Chen X R et al 2012 IEEE Trans. Dielectr. Electr. Insul. 23 95
    [18]
    Schurch R et al 2014 IEEE Trans. Dielectr. Electr. Insul. 21 53
    [19]
    Champion J V, Dodd S J and Alison J M 1996 J. Phys. D: Appl. Phys. 29 2689
    [20]
    Shimada A et al 2014 IEEE Trans. Dielectr. Electr. Insul. 21 16
    [21]
    Zhang Y X et al 2017 J. Electrostat. 88 207
    [22]
    Du B X, Han T and Su J G 2015 IEEE Trans. Dielectr. Electr. Insul. 22 720
    [23]
    Du B X et al 2017 IEEE Trans. Dielectr. Electr. Insul. 24 1527
    [24]
    Wang Y et al 2017 IEEE Trans. Dielectr. Electr. Insul. 23 3704
    [25]
    Ieda M and Nawata M 1977 IEEE Trans. Dielectr. Electr. Insul. EI-12 19
    [26]
    Zhang Y X et al 2017 IEEE Trans. Dielectr. Electr. Insul. 24 2694
    [27]
    Ha?zM et al 2015 Electrical tree characteristics with the addition of alumina in silicone rubber Proc. of the 11th Int. Conf. on the Properties and Applications of Dielectric Materials (Sydney, NSW, Australia) (IEEE) p 748
    [28]
    Zhou Y X et al 2016 IEEE Trans. Dielectr. Electr. Insul. 23 748
    [29]
    Zhang Y X et al 2017 IEEE Trans. Dielectr. Electr. Insul. 24 2694
    [30]
    Zhou Y X et al 2012 High Voltage Engineering 38 2640 (in Chinese)
    [31]
    Zhou Y X et al 2014 High Voltage Engineering 41 132 (in Chinese)
  • Related Articles

    [1]Jutao YANG (杨巨涛), Jianguo WANG (王建国), Qingliang LI (李清亮), Haiqin CHE (车海琴), Shuji HAO (郝书吉). Optimized analysis of ionospheric amplitude modulated heating parameters for excitation of very/extremely low frequency radiations[J]. Plasma Science and Technology, 2019, 21(7): 75301-075301. DOI: 10.1088/2058-6272/ab0bcd
    [2]Xiang WANG (王翔), Chen ZHOU (周晨), Moran LIU (刘默然), Binbin NI (倪彬彬), Zhengyu ZHAO (赵正予). Density disturbance of small-scale field- aligned irregularities in the ionosphere heating experiments[J]. Plasma Science and Technology, 2018, 20(12): 125001. DOI: 10.1088/2058-6272/aadd45
    [3]Xiang WANG (王翔), Chen ZHOU (周晨), Moran LIU (刘默然), Farideh HONARY, Binbin NI (倪彬彬), Zhengyu ZHAO (赵正予). Threshold of parametric instability in the ionospheric heating experiments[J]. Plasma Science and Technology, 2018, 20(11): 115301. DOI: 10.1088/2058-6272/aac71d
    [4]Lei YE (叶磊), Xiaotao XIAO (肖小涛), Yingfeng XU (徐颖峰), Zongliang DAI (戴宗良), Shaojie WANG (王少杰). Implementation of field-aligned coordinates in a semi-Lagrangian gyrokinetic code for tokamak turbulence simulation[J]. Plasma Science and Technology, 2018, 20(7): 74008-074008. DOI: 10.1088/2058-6272/aac013
    [5]Manman XU (徐曼曼), Yuntao SONG (宋云涛), Gen CHEN (陈根), Yanping ZHAO (赵燕平), Yuzhou MAO (毛玉周), Guang LIU (刘广), Zhen PENG (彭振). Tunable biasing magnetic field design of ferrite tuner for ICRF heating system in EAST[J]. Plasma Science and Technology, 2017, 19(11): 115601. DOI: 10.1088/2058-6272/aa8167
    [6]Jun WU (吴军), Jian WU (吴健), Haisheng ZHAO (赵海生), Zhengwen XU (许正文). Analysis of incoherent scatter during ionospheric heating near the fifth electron gyrofrequency[J]. Plasma Science and Technology, 2017, 19(4): 45301-045301. DOI: 10.1088/2058-6272/aa58db
    [7]CHEN Gen (陈根), QIN Chengming (秦成明), MAO Yuzhou (毛玉周), ZHAO Yanping (赵燕平), YUAN Shuai (袁帅), ZHANG Xinjun (张新军). Power Compensation for ICRF Heating in EAST[J]. Plasma Science and Technology, 2016, 18(8): 870-874. DOI: 10.1088/1009-0630/18/8/14
    [8]SUN Jicheng(孙继承), GAO Xinliang(高新亮), LU Quanming(陆全明), WANG Shui(王水). The Efficiency of Ion Stochastic Heating by a Monochromatic Obliquely Propagating Low-Frequency Alfven Wave[J]. Plasma Science and Technology, 2014, 16(10): 919-923. DOI: 10.1088/1009-0630/16/10/04
    [9]SHEN Wulin (沈武林), MA Zhibin (马志斌), TAN Bisong (谭必松), WU Jun (吴俊). Ion Heating in an ECR Plasma with a Magnetic Mirror Field[J]. Plasma Science and Technology, 2013, 15(6): 516-520. DOI: 10.1088/1009-0630/15/6/06
    [10]Y. YOSHIMURA, S. KUBO, T. SHIMOZUMA, H. IGAMI, H. TAKAHASHI, M. NISHIURA, S. OGASAWARA, R. MAKINO, T. MUTOH, H. YAMADA, A. KOMORI. High Density Plasma Heating by EC-Waves Injected from the High-Field Side for Mode Conversion to Electron Bernstein Waves in LHD[J]. Plasma Science and Technology, 2013, 15(2): 93-96. DOI: 10.1088/1009-0630/15/2/02
  • Cited by

    Periodical cited type(2)

    1. Zhao, H.-S., Feng, J., Xu, Z.-W. et al. Enhancement of ionospheric heating effect by chemical release. Scientific Reports, 2024, 14(1): 13234. DOI:10.1038/s41598-024-64011-w
    2. Lv, L., Ma, G., Che, H. et al. Study on Multi-Mode Propagation Characteristics of High-Power High-Frequency Heating Waves. 2024. DOI:10.1109/ISAPE62431.2024.10840662

    Other cited types(0)

Catalog

    Article views (224) PDF downloads (485) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return