Advanced Search+
Juan YANG (杨涓), Yuliang FU (付瑜亮), Xianchuang LIU (刘宪闯), Haibo MENG (孟海波), Yizhou JIN (金逸舟). Bended probe diagnostics of the plasma characteristics within an ECR ion source with a rectangular waveguide[J]. Plasma Science and Technology, 2018, 20(8): 85402-085402. DOI: 10.1088/2058-6272/aabb9f
Citation: Juan YANG (杨涓), Yuliang FU (付瑜亮), Xianchuang LIU (刘宪闯), Haibo MENG (孟海波), Yizhou JIN (金逸舟). Bended probe diagnostics of the plasma characteristics within an ECR ion source with a rectangular waveguide[J]. Plasma Science and Technology, 2018, 20(8): 85402-085402. DOI: 10.1088/2058-6272/aabb9f

Bended probe diagnostics of the plasma characteristics within an ECR ion source with a rectangular waveguide

Funds: The authors acknowledge the financial support of National Natural Science Foundation of China (Grant No. 11475137).
More Information
  • Received Date: December 29, 2017
  • To reveal the argon plasma characteristics within the entire region of an electron cyclotron resonance (ECR) ion source, the plasma parameters were diagnosed using a bended Langmuir probe with the filament axis perpendicular to the diagnosing plane. Experiments indicate that, with a gas volume flow rate and incident microwave power of 4 sccm and 8.8 W, respectively, the gas was ionized to form plasma with a luminous ring. When the incident microwave power was above 27 W, the luminous ring was converted to a bright column, the dark area near its axis was narrowed, and the microwave power absorbing efficiency was increased. This indicates that there was a mode transition phenomenon in this ECR ion source when the microwave power increased. The diagnosis shows that, at an incident microwave power of 17.4 W, the diagnosed electron temperature and ion density were below 8 eV and 3 × 1017 m−3, respectively, while at incident microwave power levels of 30 W and 40 W, the maximum electron temperature and ion density were above 11 eV and 6.8 × 1017 m−3, respectively. Confined by magnetic mirrors, the higher density plasma region had a bow shape, which coincided with the magnetic field lines but deviated from the ECR layer.
  • [1]
    Koizumi H and Kuninaka H 2010 J. Propuls. Power 26 601
    [2]
    Funaki I et al 2006 IEEE Trans. Plasma Sci. 34 2031
    [3]
    Funaki I, Kuninaka H and Toki K 2004 J. Propuls. Power 20 718
    [4]
    Goede H 1987 J. Spacer. Rockets 24 437
    [5]
    Jin Y Z et al 2016 Acta Phys. Sin. 65 045201 (in Chinese)
    [6]
    Ying J N 2007 Microwave and Photoconductive Wave Technology (Beijing: National Defend Industry Press)) (in Chinese)
    [7]
    Ma T C, Hu X W and Chen Y H 2012 Principles of Plasma Physics (Hefei: University of Science and Technology of China Press) (in Chinese)
    [8]
    Shikama T, Kitaoka H and Hasuo M 2014 Phys. Plasmas 21 073510
    [9]
    Demidov V I, Ratynskaia S V and Rypdal K 1999 Rev. Sci. Instrum. 70 4266
    [10]
    Demidov V I et al 2002 Rev. Sci. Instrum. 73 3409
    [11]
    Jin Y Z et al 2016 Plasma Sci. Technol. 18 744
    [12]
    Yang T L et al 2009 Chin. Space Sci. Technol. 29 46 (in Chinese)
    [13]
    Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing 2nd edn (New York: Wiley)
    [14]
    Feng B B et al 2016 J. Propuls. Technol. 09 1794 (in Chinese)
    [15]
    Yang J et al 2013 Phys. Plasmas 20 123505
  • Related Articles

    [1]Ying WANG (王莹), Anmin CHEN (陈安民), Qiuyun WANG (王秋云), Dan ZHANG (张丹), Laizhi SUI (隋来志), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Enhancement of optical emission generated from femtosecond double-pulse laser-induced glass plasma at different sample temperatures in air[J]. Plasma Science and Technology, 2019, 21(3): 34013-034013. DOI: 10.1088/2058-6272/aaefa1
    [2]Xiang WANG (王翔), Chen ZHOU (周晨), Moran LIU (刘默然), Farideh HONARY, Binbin NI (倪彬彬), Zhengyu ZHAO (赵正予). Threshold of parametric instability in the ionospheric heating experiments[J]. Plasma Science and Technology, 2018, 20(11): 115301. DOI: 10.1088/2058-6272/aac71d
    [3]Zhengwei YAO (姚征伟), Lihong CHENG (成丽红), Rongan TANG (唐荣安), Jukui XUE (薛具奎). Wakefield generation by chirped super- Gaussian laser pulse in inhomogeneous plasma[J]. Plasma Science and Technology, 2018, 20(11): 115002. DOI: 10.1088/2058-6272/aacbbf
    [4]Fanrong KONG (孔繁荣), Qiuyue NIE (聂秋月), Guangye XU (徐广野), Xiaoning ZHANG (张晓宁), Shu LIN (林澍), Binhao JIANG (江滨浩). Experimental and numerical studies on the receiving gain enhancement modulated by a sub-wavelength plasma layer[J]. Plasma Science and Technology, 2018, 20(9): 95504-095504. DOI: 10.1088/2058-6272/aac430
    [5]Xingquan WU (伍兴权), Guosheng XU (徐国盛), Baonian WAN (万宝年), Jens Juul RASMUSSEN, Volker NAULIN, Anders Henry NIELSEN, Liang CHEN (陈良), Ran CHEN (陈冉), Ning YAN (颜宁), Linming SHAO (邵林明). A new model of the L–H transition and H-mode power threshold[J]. Plasma Science and Technology, 2018, 20(9): 94003-094003. DOI: 10.1088/2058-6272/aabb9e
    [6]Fanrong KONG (孔繁荣), Qiuyue NIE (聂秋月), Shu LIN (林澍), Zhibin WANG (王志斌), Bowen LI (李博文), Shulei ZHENG (郑树磊), Binhao JIANG (江滨浩). Studies on omnidirectional enhancement of giga-hertz radiation by sub-wavelength plasma modulation[J]. Plasma Science and Technology, 2018, 20(1): 14017-014017. DOI: 10.1088/2058-6272/aa8f3e
    [7]Nader MORSHEDIAN. Specifications of nanosecond laser ablation with solid targets, aluminum, silicon rubber, and polymethylmethacrylate (PMMA)[J]. Plasma Science and Technology, 2017, 19(9): 95501-095501. DOI: 10.1088/2058-6272/aa74c5
    [8]WANG Ying (王莹), CHEN Anmin (陈安民), LI Suyu (李苏宇), SUI Laizhi (隋来志), LIU Dunli (刘敦利), LI Shuchang (李舒畅), LI He (李贺), JIANG Yuanfei (姜远飞), JIN Mingxing (金明星). Re-Heating Effect on the Enhancement of Plasma Emission Generated from Fe Under Femtosecond Double-Pulse Laser Irradiation[J]. Plasma Science and Technology, 2016, 18(12): 1192-1197. DOI: 10.1088/1009-0630/18/12/09
    [9]LIU Xun (刘勋), LI Yutong (李玉同), ZHONG Jiayong (仲佳勇), DONG Quanli (董全力), WANG Shoujun (王首钧), ZHANG Lei (张蕾), ZHU Jianqiang (朱健强), ZHAO Gang (赵刚), ZHANG Jie (张杰). Characteristics of Plasma Jets in Laser-Driven Magnetic Reconnection[J]. Plasma Science and Technology, 2012, 14(2): 97-101. DOI: 10.1088/1009-0630/14/2/03
    [10]M. HANIF, M. SALIK, M. A. BAIG. Spectroscopic Studies of the Laser Produced Lead Plasma[J]. Plasma Science and Technology, 2011, 13(2): 129-134.
  • Cited by

    Periodical cited type(6)

    1. Fikry, M., Alhijry, I.A., Aboulfotouh, A.M. et al. Feasibility of Using Boltzmann Plots to Evaluate the Stark Broadening Parameters of Cu(I) Lines. Applied Spectroscopy, 2021, 75(10): 1288-1295. DOI:10.1177/00037028211013371
    2. Tang, Z., Liu, K., Hao, Z. et al. The validity of nanoparticle enhanced molecular laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2021, 36(5): 1034-1040. DOI:10.1039/d0ja00528b
    3. Matsumoto, A., Shimazu, Y., Yoshizumi, S. et al. Laser-induced breakdown spectroscopy using a porous silicon substrate produced by metal-assisted etching: Microanalysis of a strontium chloride aqueous solution as an example. Journal of Analytical Atomic Spectrometry, 2020, 35(10): 2239-2247. DOI:10.1039/d0ja00144a
    4. El Sherbini, A.M., El Farash, A.H., El Sherbini, T.M. et al. Opacity corrections for resonance silver lines in nano-material laser-induced plasma. Atoms, 2019, 7(3): 73. DOI:10.3390/ATOMS7030073
    5. Parigger, C.G., Sherbini, A.M.E.L., Splinter, R. Selected laser-induced plasma spectroscopy: From medical to astrophysical applications. Journal of Physics: Conference Series, 2019, 1253(1): 012001. DOI:10.1088/1742-6596/1253/1/012001
    6. Wang, Q., Ma, L. Theoretical demonstration of surface plasmon polaritons in plasma/vacuum interface in GHz frequency. Plasma Science and Technology, 2019, 21(10): 105001. DOI:10.1088/2058-6272/ab307a

    Other cited types(0)

Catalog

    Article views (181) PDF downloads (529) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return