Advanced Search+
Junggil KIM, Yunjung KIM, Sangjin KIM, Guangsup CHO. Silicone-coated polyimide films deposited by surface dielectric barrier discharges[J]. Plasma Science and Technology, 2019, 21(1): 15506-015506. DOI: 10.1088/2058-6272/aae477
Citation: Junggil KIM, Yunjung KIM, Sangjin KIM, Guangsup CHO. Silicone-coated polyimide films deposited by surface dielectric barrier discharges[J]. Plasma Science and Technology, 2019, 21(1): 15506-015506. DOI: 10.1088/2058-6272/aae477

Silicone-coated polyimide films deposited by surface dielectric barrier discharges

Funds: This work was supported in part by the Korean Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20173030014460), and partly by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2018R1A2B6008642).
More Information
  • Received Date: April 23, 2018
  • Hybrid dielectric barrier discharges are investigated for plasma generated on the surface of a dielectric layer, where two conducting electrodes of high voltage and ground are formulated on the upper and bottom surfaces. Using a flexible thin polyimide-film of a thickness ranging from 25 to 125 μm, a plasma is generated with a voltage of about 1 kV and a frequency of 40 kHz. However, the surface of the dielectric layer was etched through a chemical reaction involving plasma oxygen radical species, and thus the polyimide films failed readily, resulting in dielectric breakdown within short operating time ranging from a few minutes to several tens of minutes, based on the film thicknesses of 25 μm and 125 μm, respectively. These plasma erosions were prevented by coating the polyimide surface with a 25 μm thick silicone paste. The silicone- coated film surface was then reinforced remarkably against plasma erosion as the organic polymer was vulnerable to chemical reaction of the plasma species, while the inorganic silicone exhibited a high chemical resistance against plasma erosion.
  • [1]
    Fridman G et al 2008 Plasma Process. Polym. 5 503
    [2]
    Heinlin J et al 2010 J. Dtsch. Dermatol. Ges. 8 968
    [3]
    Foster K W et al 2008 J. Cosmet. Dermatol. 7 169
    [4]
    Tiede R et al 2014 Contrib. Plasma Phys. 54 118
    [5]
    Heinlin J et al 2011 J. Eur. Acad. Dermatol. Venereol. 25 1
    [6]
    Bogle M A et al 2007 Arch. Dermatol. 143 168
    [7]
    Pan J et al 2010 IEEE Trans. Plasma Sci. 38 3143
    [8]
    Lu X P et al 2009 IEEE Trans. Plasma Sci. 37 668
    [9]
    Lee H et al 2009 J. Endod. 35 587
    [10]
    Sun P et al 2010 IEEE Trans. Plasma Sci. 38 1892
    [11]
    Schutze A et al 1998 IEEE Trans. Plasma Sci. 26 1685
    [12]
    Kolb J F et al 2008 Appl. Phys. Lett. 92 241501
    [13]
    Weltmann K D et al 2009 Contrib. Plasma Phys. 49 631
    [14]
    Daeschlein G et al 2010 Plasma Process. Polym. 7 224
    [15]
    Fridman G et al 2006 Plasma Chem. Plasma Process. 26 425
    [16]
    Fridman G et al 2007 Plasma Chem. Plasma Process. 27 163
    [17]
    Kim Y et al 2015 IEEE Trans. Plasma Sci. 43 944
    [18]
    Kim Y et al 2016 Wearable plasma-pads for healthcare applications: plasma patch, plasma bandage, plasma socks, and plasma cap 2016 IEEE Int. Conf. on Plasma Science (ICOPS) (Banff, AB: IEEE) (https://doi.org/10.1109/ PLASMA.2016.7534289)
    [19]
    Kim J et al 2017 Appl. Sci. 7 1308
    [20]
    Liaw D J et al 2012 Prog. Polym. Sci. 37 907
    [21]
    ShinEtsu Silicone JP RTV Silicone Rubbers for Electrical & Electronic Applications http://shinetsusilicone-global.com/ catalog/pdf/rtv_ele_e.pdf
    [22]
    Homola T et al 2017 Plasma Chem. Plasma Process. 37 1149
    [23]
    Cho G et al 2004 J. Phys. D: Appl. Phys. 37 2863
    [24]
    Cho G et al 2007 J. Appl. Phys. 102 113307
    [25]
    Reitz J R, Milford F J and Christy R W 2008 Foundations of Electromagnetic Theory 4th edn (Boston: Addison-Wesley)
    [26]
    Chapman B 1980 Glow Discharge Processes: Sputtering and Plasma Etching (New York: Wiley)
    [27]
    Lazukin A V et al 2017 J. Phys.: Conf. Ser. 927 012028
    [28]
    Sokolova M V et al 2013 Eur. Phys. J. Appl. Phys. 61 24312
    [29]
    Amirov R H et al 2009 Int. J. Plasma Environ. Sci. Technol. 3 35
    [30]
    Gibalov V I et al 2012 Plasma Sources Sci. Technol. 21 24010
    [31]
    Kogelschatz U 2003 Plasma Chem. Plasma Process 23 1
    [32]
    Wagner H E et al 2003 Vacuum 71 417
  • Related Articles

    [1]Yumei HOU (侯玉梅), Wei CHEN (陈伟), Yi YU (余羿), Xuru DUAN (段旭如), Min XU (许敏), Minyou YE (叶民友), HL-A Team. Study of nonlinear mode–mode couplings between Alfvénic modes by the Fourier bicoherence and Lissajous-curve technique in HL-2A[J]. Plasma Science and Technology, 2019, 21(7): 75101-075101. DOI: 10.1088/2058-6272/ab08fe
    [2]Junwei JIA (贾军伟), Hongbo FU (付洪波), Zongyu HOU (侯宗余), Huadong WANG (王华东), Zhibo NI (倪志波), Fengzhong DONG (董凤忠). Calibration curve and support vector regression methods applied for quantification of cement raw meal using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34003-034003. DOI: 10.1088/2058-6272/aae3e1
    [3]Yang LIU (刘洋), Jiaming SHI (时家明), Li CHENG (程立), Jiachun WANG (汪家春), Zhongcai YUAN (袁忠才), Zongsheng CHEN (陈宗胜). High-power microwave propagation properties in the argon plasma array[J]. Plasma Science and Technology, 2019, 21(1): 15402-015402. DOI: 10.1088/2058-6272/aae369
    [4]Wei ZHANG (张伟), Tongyu WU (吴彤宇), Baogang DING (丁宝钢), Yonggao LI (李永高), Yan ZHOU (周艳), Zejie YIN (阴泽杰). A precision control method for plasma electron density and Faraday rotation angle measurement on HL-2A[J]. Plasma Science and Technology, 2017, 19(7): 75603-075603. DOI: 10.1088/2058-6272/aa64cd
    [5]FU Chao (付超), ZHONG Fangchuan (钟方川), HU Liqun (胡立群), YANG Jianhua (杨建华), YANG Zhendong (仰振东), GAN Kaifu (甘开福), ZHANG Bin (张斌), EAST Team. The Calibration of High-Speed Camera Imaging System for ELMs Observation on EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(9): 884-889. DOI: 10.1088/1009-0630/18/9/02
    [6]DING Baogang (丁宝钢), WU Tongyu (吴彤宇), LI Shiping (李世平), ZHOU Yan (周艳), YIN Zejie (阴泽杰). The Real-Time, High Precision Phase Difference Measurement of Electron Density in HL-2A Tokamak[J]. Plasma Science and Technology, 2015, 17(9): 797-801. DOI: 10.1088/1009-0630/17/9/13
    [7]FU Wenjie (傅文杰), YAN Yang (鄢扬). Analysis of High-Power Microwave Propagation in a Magnetized Plasma Filled Waveguide[J]. Plasma Science and Technology, 2013, 15(10): 974-978. DOI: 10.1088/1009-0630/15/10/03
    [8]YANG Dong (杨东), LU Jingbin (陆景彬), LIU Yunzuo (刘运祚), MA Keyan (马克岩), WANG Huidong (王辉东), WANG Lielin (王烈林), LIU Gongye (刘弓冶), LI Li (李黎), MA Yingjun (马英君), ZHU Lihua (竺礼华), et al. High-k structures in 124Cs[J]. Plasma Science and Technology, 2012, 14(7): 607-609. DOI: 10.1088/1009-0630/14/7/09
    [9]Yu Beibei (于蓓蓓), Zhu Lihua (竺礼华), He Chuangye (贺创业), Wu Xiaoguang (吴晓光), Zheng Yun (郑云), Li Guangsheng (李广生), Wang Lielin (王烈林), Yao Shunhe (姚顺和), Zhang Biao (张彪), Xu Chuan (徐川), Hao Xin, et al. High Spin Structure in 106Pd[J]. Plasma Science and Technology, 2012, 14(6): 531-533. DOI: 10.1088/1009-0630/14/6/22
    [10]ZHU Shengjiang(朱胜江), GU Long(顾龙), WANG Jianguo(王建国), XIAO Zhigang(肖志刚), Yeoh Eingyee(杨韵颐), ZHANG Ming(张明), LIU Yu(刘宇), DING Huaibo(丁怀博), ZHU Lihua(竺礼华), WU Xiaoguang(吴晓光), HE Chuangy, et al. High-Spin States in 141Pm[J]. Plasma Science and Technology, 2012, 14(6): 496-498. DOI: 10.1088/1009-0630/14/6/13
  • Cited by

    Periodical cited type(1)

    1. Linczuk, P., Wojeński, A., Czarski, T. et al. Heterogeneous Online Computational Platform for GEM-Based Plasma Impurity Monitoring Systems. Energies, 2024, 17(22): 5539. DOI:10.3390/en17225539

    Other cited types(0)

Catalog

    Article views (175) PDF downloads (181) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return