Advanced Search+
Yemin ZHAN (詹烨旻), Bin GUO (郭斌). Negative refraction in a rotational plasma metamaterial[J]. Plasma Science and Technology, 2019, 21(1): 15002-015002. DOI: 10.1088/2058-6272/aae7da
Citation: Yemin ZHAN (詹烨旻), Bin GUO (郭斌). Negative refraction in a rotational plasma metamaterial[J]. Plasma Science and Technology, 2019, 21(1): 15002-015002. DOI: 10.1088/2058-6272/aae7da

Negative refraction in a rotational plasma metamaterial

Funds: This work was supported by National Natural Science Foundation of China (No. 11575135).
More Information
  • Received Date: June 19, 2018
  • The features of negative refraction are investigated by using a rotational plasma metamaterial. It is assumed that the plasma metamaterial is composed of plasma and dielectric material periodically. The analytical results show that the plasma density, plasma filling factor, and rotation angle significantly changed the properties of negative refraction. Interestingly, the plasma metamaterial without exhibiting negative refraction effect will show negative refraction when rotating the optical axis of the metamaterial, while the range of incident angle for negative refraction will be reduced or even disappear for the plasma metamaterial exhibiting negative refraction effect when rotating the optical axis. Moreover, the full-angle negative refraction can be obtained by specific rotation angle and plasma density. The effects of plasma density, plasma filling factor and the rotation angle on the properties of THE negative refraction effect are also explored and discussed in detail.
  • [1]
    Hojo H and Mase A 2004 J. Plasma Fusion Res. 80 89
    [2]
    Sakai O, Sakaguchi T and Tachibana K 2005 Appl. Phys. Lett. 87 241505
    [3]
    Sakai O, Sakaguchi T and Tachibana K 2007 Contrib. Plasma Phys. 47 96
    [4]
    Guo B 2009 Phys. Plasmas 16 043508
    [5]
    Guo B 2009 Plasma Sci. Tech. 11 18
    [6]
    Fan W L and Dong L F 2010 Phys. Plasmas 17 073506
    [7]
    Guo B et al 2012 Phys. Plasmas 19 044505
    [8]
    Qi L et al 2015 Plasma Sci. Tech. 17 4
    [9]
    Awasthi S K, Panda R and Shiveshwari L 2017 Phys. Plasmas 24 072111
    [10]
    Lehmann G and Spatschek K H 2016 Phys. Rev. Lett. 116 225002
    [11]
    Lehmann G and Spatschek K H 2017 Phys. Plasmas 24 056701
    [12]
    Wang B and Cappelli M A 2016 Appl. Phys. Lett. 108 161101
    [13]
    Zhang H F et al 2012 Phys. Plasmas 19 022103
    [14]
    Zhang H F and Liu S B 2016 AIP Adv. 6 085116
    [15]
    Zhang H F and Chen Y Q 2016 Phys. Plasmas 24 042116
    [16]
    Zhang H F 2018 AIP Adv. 8 015304
    [17]
    Tan H et al 2018 IEEE Trans. Plasma Sci. 46 539
    [18]
    Osamu S and Kunihide T 2012 Plasma Sources Sci. Tech. 21 013001
    [19]
    Guo B 2012 J. Electromagn. Waves Appl. 26 2445
    [20]
    Guo B 2013 Chin. Phys. Lett. 30 105201
    [21]
    Zeng A W and Guo B 2017 Opt. Quantum Electron. 49 200
    [22]
    Gao C and Guo B 2017 Phys. Plasmas 24 093520
    [23]
    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
    [24]
    John S 1987 Phys. Rev. Lett. 58 2486
    [25]
    Poddubny A et al 2013 Nat. Photon. 7 948
    [26]
    Ferrari et al 2015 Prog. Quantum Electron. 40 1
    [27]
    Heald M A and Wharton C B 1978 Plasma Diagnostics with Microwaves (New York: Krieger)
    [28]
    Viktor G V 1968 Sov. Phys. - Usp. 10 509
    [29]
    De Carvalho C A A 2016 Phys. Rev. D 93 105005
    [30]
    Lezec H J, Dionne J A and Atwater H A 2007 Science 316 430
    [31]
    Wu M R et al 2015 IEEE Trans. Thz. Sci. Technol. 5 230
    [32]
    Peng L et al 2015 Chin. Phys. Lett. 32 065202
    [33]
    Cubuken E et al 2003 Nature 423 604
    [34]
    Parimi P V et al 2004 Phys. Rev. Lett. 92 127401
    [35]
    Schilling J 2006 Phys. Rev. E 74 046618
    [36]
    Hoffman A J et al 2007 Nat. Mater. 6 946
    [37]
    Guo B 2013 Phys. Plasmas 20 093506
    [38]
    Gao M X et al 2014 Phys. Plasmas 21 114501
    [39]
    Sayem A A, Mahdy M R C and Rahman M S 2016 J. Opt. 18 015101
    [40]
    Chen X L et al 2005 Phys. Rev. B 72 113111
    [41]
    Choy T C 1999 Effective Medium Theory: Principles and Applications (Oxford: Oxford University Press)
    [42]
    Shekhar P, Atkinson J and Jacob Z 2014 Nano Convergence 1 14
    [43]
    Liu Y, Bartal G and Zhang X 2008 Opt. Express 16 15439
    [44]
    Lu T W and Sridhar S 2008 Phys. Rev. B 77 23310
  • Related Articles

    [1]Shaohua QIN, Meizhi WANG, Jun DU, Lanlan NIE, Jie PAN. Effect of power supply parameters on discharge characteristics and sterilization efficiency of magnetically driven rotating gliding arc[J]. Plasma Science and Technology, 2024, 26(9): 094006. DOI: 10.1088/2058-6272/ad547d
    [2]Hua LI, Minglei LI, Hongcheng ZHU, Yuhan ZHANG, Xiaoxia DU, Zhencheng CHEN, Wenxiang XIAO, Kun LIU. Realizing high efficiency and large-area sterilization by a rotating plasma jet device[J]. Plasma Science and Technology, 2022, 24(4): 045501. DOI: 10.1088/2058-6272/ac550d
    [3]Lishan TIAN (田丽山), Weimin BAO (包为民), Yanming LIU (刘彦明), Chao SUN (孙超), Chengwei ZHAO (赵成伟). Probe method to measure the electromagnetic field in a plasma by Poynting vector conversion[J]. Plasma Science and Technology, 2021, 23(12): 125402. DOI: 10.1088/2058-6272/ac264c
    [4]Zhenghao REN (任政豪), Jinyuan LIU (刘金远), Feng WANG (王丰), Huishan CAI (蔡辉山), Zhengxiong WANG (王正汹), Wei SHEN (申伟). Influence of toroidal rotation on the tearing mode in tokamak plasmas[J]. Plasma Science and Technology, 2020, 22(6): 65102-065102. DOI: 10.1088/2058-6272/ab77d4
    [5]Chaoxing DAI (戴超星), Chao SONG (宋超), Xue GUO (郭雪), Wentao SUN (孙文涛), Zhiqiang GUO (郭志强), Fucheng LIU (刘富成), Yafeng HE (贺亚峰). Rotation of dust vortex in a metal saw structure in dusty plasma[J]. Plasma Science and Technology, 2020, 22(3): 34008-034008. DOI: 10.1088/2058-6272/ab580b
    [6]Hao ZHANG (张浩), Fengsen ZHU (朱凤森), Xiaodong LI (李晓东), Changming DU (杜长明). Dynamic behavior of a rotating gliding arc plasma in nitrogen: effects of gas flow rate and operating current[J]. Plasma Science and Technology, 2017, 19(4): 45401-045401. DOI: 10.1088/2058-6272/aa57f3
    [7]Long CHEN (陈龙), Jinyuan LIU (刘金远), Ping DUAN (段萍), Guangrui LIU (刘广睿), Xingyu BIAN (边兴宇). Modeling of the influences of multiple modulated electron cyclotron current drive on NTMs in rotating plasma[J]. Plasma Science and Technology, 2017, 19(2): 24002-024002. DOI: 10.1088/2058-6272/19/2/024002
    [8]ZHANG Hao (张浩), ZHU Fengsen (朱凤森), TU Xin (屠昕), BO Zheng (薄拯), CEN Kefa (岑可法), LI Xiaodong (李晓东). Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas[J]. Plasma Science and Technology, 2016, 18(5): 473-477. DOI: 10.1088/1009-0630/18/5/05
    [9]LI Cong (李聪), ZHANG Jialiang (张家良), YAO Zhi (姚志), WU Xingwei (吴兴伟), et al.. Diagnosis of Electron, Vibrational and Rotational Temperatures in an Ar/N 2 Shock Plasma Jet Produced by a Low Pressure DC Cascade Arc Discharge[J]. Plasma Science and Technology, 2013, 15(9): 875-880. DOI: 10.1088/1009-0630/15/9/08
    [10]XU Guosheng, V. NAULIN, WAN Baonian, GUO Houyang, ZHANG Wei. A Dip Structure in the Intrinsic Toroidal Rotation Near the Edge of the Ohmic Plasmas in EAST[J]. Plasma Science and Technology, 2011, 13(4): 397-404.
  • Cited by

    Periodical cited type(2)

    1. Yang, H., Zhang, J., Shen, Z. Water-based metamaterial absorber for temperature modulation. Physica Scripta, 2024, 99(10): 105563. DOI:10.1088/1402-4896/ad7b8a
    2. Liu, Y.L., Chen, W.C., Guo, B. Magneto-optical effects on the properties of the photonic spin Hall effect owing to the defect mode in photonic crystals with plasma. AIP Advances, 2019, 9(7): 075111. DOI:10.1063/1.5094664

    Other cited types(0)

Catalog

    Article views (160) PDF downloads (221) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return