Advanced Search+
Wanhai LIU (刘万海), Changping YU (于长平), Pei WANG (王裴), Zheng FU (付峥), Lili WANG (王丽丽), Yulian CHEN (陈玉莲). Finite-thickness effect of the fluids on bubbles and spikes in Richtmyer–Meshkov instability for arbitrary Atwood numbers[J]. Plasma Science and Technology, 2019, 21(2): 25001-025001. DOI: 10.1088/2058-6272/aaee0c
Citation: Wanhai LIU (刘万海), Changping YU (于长平), Pei WANG (王裴), Zheng FU (付峥), Lili WANG (王丽丽), Yulian CHEN (陈玉莲). Finite-thickness effect of the fluids on bubbles and spikes in Richtmyer–Meshkov instability for arbitrary Atwood numbers[J]. Plasma Science and Technology, 2019, 21(2): 25001-025001. DOI: 10.1088/2058-6272/aaee0c

Finite-thickness effect of the fluids on bubbles and spikes in Richtmyer–Meshkov instability for arbitrary Atwood numbers

Funds: This work was supported by National Natural Science Foundation of China (Nos. U1530261, 91852203, and 11472278), the Innovation Fund of Fundamental Technology Institute of All Value In Creation (No. JCY2015A005), the Natural Science Foundation of Sichuan Province (Nos. 18ZA0260, and 2018JY0454), the Natural Science Foundation of Mianyang Normal University (Nos. HX2017007, MYSY2017JC06 and MYSY2018T004), and the National High-Tech Inertial Confinement Fusion Committee.
More Information
  • Received Date: July 20, 2018
  • This paper investigates the finite-thickness effect of two superimposed fluids on bubbles and spikes in Richtmyer–Meshkov instability (RMI) for arbitrary Atwood numbers by using the method of the small parameter expansion up to the second order. When the thickness of the two fluids tends to be infinity, our results can reproduce the classical results where RMI happens at the interface separating two semi-infinity-thickness fluids of different densities. It is found that the thickness has a large influence on the amplitude evolution of bubbles and spikes compared with those in classical RMI. Based on the thickness relationship of the two fluids, the thickness effect on bubbles and spikes for four cases is discussed. The thickness encourages (or reduces) the growth of bubbles or spikes, depending on not only Atwood number, but also the relationship of the thickness ratio of the heavy and light fluids, which is explicitly determined in this paper.
  • [1]
    Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297
    [2]
    Meshkov E E 1969 Fluid Dyn. 4 101
    [3]
    Velikovich A L et al 2000 Phys. Plasmas 7 1662
    [4]
    Matsuoka C and Nishihara K 2006 Phys. Rev. E 73 055304(R)
    [5]
    Haan S W 1995 Phys. Plasmas 2 2480
    [6]
    Nishihara B K et al 2010 Phil. Trans. R. Soc. A 368 1769
    [7]
    Zhou Y 2017 Phy. Rep. 720–722 1
    [8]
    Zhou Y 2017 Phy. Rep. 723–725 1
    [9]
    He X T and Zhang W Y 2007 Eur. Phys. J. D 44 227
    [10]
    He X T et al 2016 Phys. Plasmas 23 082706
    [11]
    Ye W H, Zhang W Y and He X T 2002 Phys. Rev. E 65 057401
    [12]
    Ye W H, Wang L F and He X T 2010 Phys. Plasmas 17 122704
    [13]
    Wang L F et al 2015 Phys. Plasmas 22 082702
    [14]
    Wang L F et al 2016 Phys. Plasmas 23 052713
    [15]
    Mikaelian K O 1996 Phys. Rev. E 54 3676
    [16]
    Wang L F et al 2014 Phys. Plasmas 21 122710
    [17]
    Velikovich A L and Schmit P F 2015 Phys. Plasmas 22 122711
    [18]
    Piriz S A, Piriz A R and Tahir N A 2017 Phys. Rev. E 95 053108
    [19]
    Dimonte G 1999 Phys. Plasmas 6 2009
    [20]
    Grove J W et al 1993 Phys. Rev. Lett. 71 3473
    [21]
    Alon U et al 1995 Phys. Rev. Lett. 74 534
    [22]
    Sohn S-I 2004 Phys. Rev. E 69 036703
    [23]
    Haan S W 1991 Phys. Fluids B 3 2349
    [24]
    Hecht J et al 1994 Phys. Fluids 6 4019
    [25]
    Zhang Q and Sohn S-I 1996 Phys. Lett. A 212 149
    [26]
    Sohn S-I 2003 Phys. Rev. E 67 026301
    [27]
    Wouchuk J G 2001 Phys. Rev. E 63 056303
    [28]
    Mügler C and Gauthier S 1998 Phys. Rev. E 58 4548
    [29]
    Rikanati A et al 1998 Phys. Rev. E 58 7410
    [30]
    Vandenboomgaerde M, Gauthier S and Mugler C 2002 Phys. Fluids 14 1111
    [31]
    Liu W H et al 2012 Phys. Plasmas 19 072108
    [32]
    Bender C M and Orszag S A 1978 Advanced Mathematical Methods for Scientists and Engineers (New York: McGraw-Hill)
    [33]
    Mikaelian K O 1985 Phys. Rev. A 31 410
  • Related Articles

    [1]Sibo WANG, Bangdeng DU, Baosheng DU, Yongzan ZHENG, Yanji HONG, Jifei YE, Baoyu XING, Chenglin LI, Yonghao ZHANG. Impacts of laser pulse width and target thickness on laser micro-propulsion performance[J]. Plasma Science and Technology, 2022, 24(10): 105504. DOI: 10.1088/2058-6272/ac6da8
    [2]Mariammal MEGALINGAM, Bornali SARMA. Occurrence of ionization instability associated with plasma bubble in glow discharge magnetized plasma[J]. Plasma Science and Technology, 2019, 21(11): 115402. DOI: 10.1088/2058-6272/ab2ef2
    [3]Nima VAZIRI. Low pressure mercury–argon electrodeless fluorescent lamp simulation using the finite volume method[J]. Plasma Science and Technology, 2018, 20(10): 105403. DOI: 10.1088/2058-6272/aad040
    [4]MA Jun (马骏), QIN Hong (秦宏), YU Zhi (于治), LI Dehui (李德徽). Nonlinear Simulations of Coalescence Instability Using a Flux Difference Splitting Method[J]. Plasma Science and Technology, 2016, 18(7): 714-719. DOI: 10.1088/1009-0630/18/7/03
    [5]A. C. FISHER, D. S. BAILEY, T. B. KAISER, D. C. EDER, B. T. N. GUNNEY, N. D. MASTERS, A. E. KONIGES, R. W. ANDERSON. An AMR Capable Finite Element Diffusion Solver for ALE Hydrocodes[J]. Plasma Science and Technology, 2015, 17(2): 109-116. DOI: 10.1088/1009-0630/17/2/04
    [6]QU Hongpeng (曲洪鹏), PENG Xiaodong (彭晓东), SHEN Yong (沈勇), WANG Aike (王爱科), HAO Guangzhou (郝广周), HU Shilin (胡世林). Effect of Finite-Ion-Banana-Width on the Polarization Contribution to the Neoclassical Tearing Modes Evolution[J]. Plasma Science and Technology, 2014, 16(12): 1090-1095. DOI: 10.1088/1009-0630/16/12/02
    [7]LI Sen(李森), SONG Zhiquan(宋执权), ZHANG Ming(张明), XU Liuwei(许留伟), LI Jinchao(李金超), FU Peng(傅鹏), WANG Min(王敏), DONG Lin(董琳). Finite Element Method Applied to Fuse Protection Design[J]. Plasma Science and Technology, 2014, 16(3): 294-299. DOI: 10.1088/1009-0630/16/3/22
    [8]WANG Lifeng (王立锋), YE Wenhua (叶文华), FAN Zhengfeng (范征锋), et al.. Nonlinear Evolution of Jet-Like Spikes from the Single-Mode Ablative Rayleigh-Taylor Instability with Preheating[J]. Plasma Science and Technology, 2013, 15(10): 961-968. DOI: 10.1088/1009-0630/15/10/01
    [9]M. BUNNO, Y. NAKAMURA, Y. SUZUKI, K. SHINOHARA, G. MATSUNAGA, K. TANI. The Finite Beta E®ects on the Toroidal Field Ripple in a Tokamak Plasma[J]. Plasma Science and Technology, 2013, 15(2): 115-118. DOI: 10.1088/1009-0630/15/2/07
    [10]SHI Xingjian (侍行剑), HU Yemin (胡业民), GAO Zhe (高喆). Optimization of Lower Hybrid Current Drive Efficiency for EAST Plasma with Non-Circular Cross Section and Finite Aspect-Ratio[J]. Plasma Science and Technology, 2012, 14(3): 215-221. DOI: 10.1088/1009-0630/14/3/06
  • Cited by

    Periodical cited type(1)

    1. Zhou, Y., Clark, T.T., Clark, D.S. et al. Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities. Physics of Plasmas, 2019, 26(8): 080901. DOI:10.1063/1.5088745

    Other cited types(0)

Catalog

    Article views (163) PDF downloads (284) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return