Advanced Search+
Nima VAZIRI. Low pressure mercury–argon electrodeless fluorescent lamp simulation using the finite volume method[J]. Plasma Science and Technology, 2018, 20(10): 105403. DOI: 10.1088/2058-6272/aad040
Citation: Nima VAZIRI. Low pressure mercury–argon electrodeless fluorescent lamp simulation using the finite volume method[J]. Plasma Science and Technology, 2018, 20(10): 105403. DOI: 10.1088/2058-6272/aad040

Low pressure mercury–argon electrodeless fluorescent lamp simulation using the finite volume method

More Information
  • Received Date: January 08, 2018
  • A finite volume model of a low pressure Ar–Hg electrodeless lamp with external coils is established. The physical configuration is similar to the OSRAM/ENDURA 70 W lamp. A Maxwellian energy distribution is assumed. Two dimensional behaviors of the most important plasma parameters such as the electron density, the electron temperature and the most important mercury states are discussed. Results are in good agreement with former studies and the general understanding in this area. Also, the influence of the argon pressure is studied. Based on the simulation, the population of the main resonance state, Hg (63P1 ) depends on the argon pressure and the optimized value is about 300 mTorr.
  • [1]
    Rajaraman K 2005 Radiation transport in low pressure plasmas: lighting and semiconductor etching plasmas PhD University of Illinois Illinois USA
    [2]
    Denisova N et al 2005 J. Phys. D Appl. Phys. 38 3275
    [3]
    Godyak V A, Piejak R B and Alexandrovich B M 2002 Plasma Sources Sci. Technol. 11 525
    [4]
    Piejak R B, Godyak V A and Alexandrovich B M 1992 Plasma Sources Sci. Technol. 1 179
    [5]
    Rajaraman K and Kushner M J 2004 J. Phys. D Appl. Phys. 37 1780
    [6]
    Lister G G et al 2004 Rev. Mod. Phys. 76 541
    [7]
    Yang S et al 2012 Plasma Sci. Technol. 14 147
    [8]
    Song S H et al 2014 Phys. Plasma 21 093512
    [9]
    Liu Y, Zissis G and Chen Y M 2013 Plasma Sci. Technol. 22 035002
    [10]
    Fierro A et al 2017 J. Phys. D Appl. Phys. 50 065202
    [11]
    Osram Sylvania I 2005 The high performance electrodeless fluorescent lamp Munich, Germany 56705-PI-Endura-gb (http://osram.com/media/resource/HIRES/333886/ 554635/ENDURA-QUICKTRONIC-System-%E2%80% 93-QT-ENDURA.pdf)
    [12]
    Rauf S and Kushner M J 1997 J. Appl. Phys. 81 5966
    [13]
    Ventzek P L G, Hoekstra R J and Kushner M J 1994 J. Vac. Sci. Technol. B 12 461
    [14]
    Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722
    [15]
    Gordon S and McBride B J 1976 Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman-Jouguet detonations Cleveland, OH, United States NASA-SP-273 (https://ntrs.nasa.gov/archive/nasa/casi. ntrs.nasa.gov/19780009781.pdf)
    [16]
    Kee R J, Coltrin M E and Glarborg P 2003 Chemically Reacting Flow: Theory and Practice (Hoboken, NJ: Wiley)
  • Related Articles

    [1]Minglei SHAN (单鸣雷), Bingyan CHEN (陈秉岩), Cheng YAO (姚澄), Qingbang HAN (韩庆邦), Changping ZHU (朱昌平), Yu YANG (杨雨). Electric characteristic and cavitation bubble dynamics using underwater pulsed discharge[J]. Plasma Science and Technology, 2019, 21(7): 74002-074002. DOI: 10.1088/2058-6272/ab0b62
    [2]Kefeng SHANG (商克峰), Jie LI (李杰), Rino MORENT. Hybrid electric discharge plasma technologies for water decontamination: a short review[J]. Plasma Science and Technology, 2019, 21(4): 43001-043001. DOI: 10.1088/2058-6272/aafbc6
    [3]Amin JIANG (蒋阿敏), Chao YE (叶超), Xiangying WANG (王响英), Min ZHU (朱敏), Su ZHANG (张苏). Ion property and electrical characteristics of 60 MHz very-high-frequency magnetron discharge at low pressure[J]. Plasma Science and Technology, 2018, 20(10): 105401. DOI: 10.1088/2058-6272/aad379
    [4]S N BATHGATE, M M M BILEK, D R MCKENZIE. Electrodeless plasma thrusters for spacecraft: a review[J]. Plasma Science and Technology, 2017, 19(8): 83001-083001. DOI: 10.1088/2058-6272/aa71fe
    [5]Li ZHANG (张丽), Dezheng YANG (杨德正), Sen WANG (王森), Wenchun WANG (王文春). Spatiotemporal characteristics of nanosecond pulsed discharge in an extremely asymmetric electric field at atmospheric pressure[J]. Plasma Science and Technology, 2017, 19(6): 64006-064006. DOI: 10.1088/2058-6272/aa632d
    [6]WANG Xifeng (王喜凤), SONG Yuanhong (宋远红), ZHAO Shuxia (赵书霞), DAI Zhongling (戴忠玲), WANG Younian (王友年). Hybrid Simulation of Duty Cycle Influences on Pulse Modulated RF SiH4/Ar Discharge[J]. Plasma Science and Technology, 2016, 18(4): 394-399. DOI: 10.1088/1009-0630/18/4/11
    [7]RAN Huijuan(冉慧娟), WANG Lei(王磊), WANG Jue(王珏), WANG Tao(王涛), YAN Ping(严萍). Discharge Characteristics of SF6 in a Non-Uniform Electric Field Under Repetitive Nanosecond Pulses[J]. Plasma Science and Technology, 2014, 16(5): 465-470. DOI: 10.1088/1009-0630/16/5/05
    [8]YANG Shen (杨深), SSHI Ting(石挺), LIU yang(刘洋 ), CHEN Yuming (陈育明). Modelling of Ar-Hg Electrodeless Lamps[J]. Plasma Science and Technology, 2012, 14(2): 147-151. DOI: 10.1088/1009-0630/14/2/12
    [9]SHAO Xianjun, ZHANG Guanjun, KAWADA Masatake, MA Yue, LI Yaxi. Simulational study on multi-pulse phenomena of atmospheric pressure argon dielectric barrier discharge[J]. Plasma Science and Technology, 2011, 13(6): 708-713.
    [10]Hasina KHATUN, A K SHARMA, P K BARHAI. Characterization of Vacuum Ultraviolet (VUV) Radiation for the Development of a Fluorescent Lamp[J]. Plasma Science and Technology, 2011, 13(4): 480-485.

Catalog

    Article views (142) PDF downloads (301) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return