Advanced Search+
Qiao WANG (王乔), Liyun MA (马丽云). Theoretical demonstration of surface plasmon polaritons in plasma/vacuum interface in GHz frequency[J]. Plasma Science and Technology, 2019, 21(10): 105001. DOI: 10.1088/2058-6272/ab307a
Citation: Qiao WANG (王乔), Liyun MA (马丽云). Theoretical demonstration of surface plasmon polaritons in plasma/vacuum interface in GHz frequency[J]. Plasma Science and Technology, 2019, 21(10): 105001. DOI: 10.1088/2058-6272/ab307a

Theoretical demonstration of surface plasmon polaritons in plasma/vacuum interface in GHz frequency

Funds: The authors acknowledge the financial support of National Natural Science Foundation of China (Nos. 11405020, 61520106013, 51661145025, 61727816).
More Information
  • Received Date: June 22, 2019
  • Revised Date: July 04, 2019
  • Accepted Date: July 18, 2019
  • Negative permittivity of the material may lead to the enhanced radiation of an antenna embedded in a finite plasma, which suggests a potential way to solve blackout problem in space technology. However, the enhanced radiation phenomenon is still lack of strict theoretical investigations of surface plasmon polaritons (SPPs) in plasma in GHz frequency. In this paper, we demonstrate the SPPs excited at a plasma/vacuum interface in GHz frequency by the consistency of the simulated and theoretical results. With SPPs, plasma layer thicker than skin depth can be penetrated with w < wp, which is a complement of wave propagation theory in plasma. We also discuss the influences of thickness d, collision frequency Γ, and different plasma frequencies on SPPs. For plasma frequencies with large difference, common numerical methods have difficulties in result comparison under the same mesh size because of the computer capacity and memory. The analytical multilayer method used in the paper does not need to generate mesh, so the studies of plasma frequencies with large difference can be carried out. The simulation shows that the SPPs can be excited for an arbitrary plasma frequency. We believe the study will be beneficial for the problem of wave propagation in plasma science and technology.
  • [1]
    Schurig D, Mock J J and Smith D R 2006 Appl. Phys. Lett. 88 041109
    [2]
    Zhou L et al 2005 Phys. Rev. Lett. 94 243905
    [3]
    El Sherbini A M et al 2019 Plasma Sci. Technol. 21 015502
    [4]
    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer)
    [5]
    Luo X G and Ishihara T 2004 Appl. Phys. Lett. 84 4780
    [6]
    Gao P et al 2015 Appl. Phys. Lett. 106 093110
    [7]
    Yeatman E M 1996 Biosens. Bioelectron. 11 635
    [8]
    Long M Z et al 2016 Nanoscale 8 6290
    [9]
    Zeng S W et al 2014 Chem. Soc. Rev. 43 3426
    [10]
    Robertson W M et al 1993 Opt. Lett. 18 528
    [11]
    Zheng G G et al 2016 Opt. Lett. 41 1582
    [12]
    Gric T and Hess O 2017 J. Appl. Phys. 122 193105
    [13]
    Yaqoob M Z et al 2019 J. Opt. Soc. Am. B 36 204
    [14]
    Jiang L Y et al 2019 Chin. Opt. Lett. 17 020008
    [15]
    Gric T 2016 J. Electromagn. Wave 30 721
    [16]
    Messiaen A M and Vandenplas P E 1967 Electron. Lett. 3 26
    [17]
    Chen K M and Lin C C 1968 Proc. IEEE 56 1595
    [18]
    Lin C and Chen K M 1969 IEEE Trans. Antennas Propag.17 675
    [19]
    Freeman E M, Lin C C and Chen K M 1971 Proc. Inst. Electr.Eng. 118 1748
    [20]
    Jin Y and Li B M 2014 Plasma Sci. Technol. 16 50
    [21]
    Wang C S, Li X A and Jiang B H 2015 Appl. Phys. Lett. 106 102901
    [22]
    Wang C S et al 2015 Phys. Plasmas 22 063501
    [23]
    Kong F R et al 2017 IEEE Trans. Plasma Sci. 45 381
    [24]
    Morabito D D 2002 IPN Prog. Rep. 42–150 1
    [25]
    Chen Z Q et al 2015 Chin. Phys. B 24 025203
    [26]
    Chen Z Q et al 2017 J. Appl. Phys. 122 093301
    [27]
    Chen Z Q et al 2018 Sci. Sin. Phys. Mech. Astronom. 48 125201
    [28]
    Chen Z Q et al 2019 IEEE Trans. Plasma Sci. (https://doi.org/10.1109/TPS.2019.2894028)
    [29]
    Chen Z Q et al 2010 Chin. Phys. Lett. 27 025205
    [30]
    Inan U S and Gołkowski M 2010 Principles of Plasma Physics for Engineers and Scientists (Cambridge: Cambridge University Press)
    [31]
    Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
    [32]
    Huba J 2016 NRL Plasma Formulary (Washington: Naval Research Lab.)
    [33]
    Dresser M J 1968 J. Appl. Phys. 39 338
    [34]
    Lin T C and Sproul L K 2006 Comput. Fluids 35 703
  • Related Articles

    [1]Yumei HOU (侯玉梅), Wei CHEN (陈伟), Yi YU (余羿), Xuru DUAN (段旭如), Min XU (许敏), Minyou YE (叶民友), HL-A Team. Study of nonlinear mode–mode couplings between Alfvénic modes by the Fourier bicoherence and Lissajous-curve technique in HL-2A[J]. Plasma Science and Technology, 2019, 21(7): 75101-075101. DOI: 10.1088/2058-6272/ab08fe
    [2]Junwei JIA (贾军伟), Hongbo FU (付洪波), Zongyu HOU (侯宗余), Huadong WANG (王华东), Zhibo NI (倪志波), Fengzhong DONG (董凤忠). Calibration curve and support vector regression methods applied for quantification of cement raw meal using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34003-034003. DOI: 10.1088/2058-6272/aae3e1
    [3]Yang LIU (刘洋), Jiaming SHI (时家明), Li CHENG (程立), Jiachun WANG (汪家春), Zhongcai YUAN (袁忠才), Zongsheng CHEN (陈宗胜). High-power microwave propagation properties in the argon plasma array[J]. Plasma Science and Technology, 2019, 21(1): 15402-015402. DOI: 10.1088/2058-6272/aae369
    [4]Wei ZHANG (张伟), Tongyu WU (吴彤宇), Baogang DING (丁宝钢), Yonggao LI (李永高), Yan ZHOU (周艳), Zejie YIN (阴泽杰). A precision control method for plasma electron density and Faraday rotation angle measurement on HL-2A[J]. Plasma Science and Technology, 2017, 19(7): 75603-075603. DOI: 10.1088/2058-6272/aa64cd
    [5]FU Chao (付超), ZHONG Fangchuan (钟方川), HU Liqun (胡立群), YANG Jianhua (杨建华), YANG Zhendong (仰振东), GAN Kaifu (甘开福), ZHANG Bin (张斌), EAST Team. The Calibration of High-Speed Camera Imaging System for ELMs Observation on EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(9): 884-889. DOI: 10.1088/1009-0630/18/9/02
    [6]DING Baogang (丁宝钢), WU Tongyu (吴彤宇), LI Shiping (李世平), ZHOU Yan (周艳), YIN Zejie (阴泽杰). The Real-Time, High Precision Phase Difference Measurement of Electron Density in HL-2A Tokamak[J]. Plasma Science and Technology, 2015, 17(9): 797-801. DOI: 10.1088/1009-0630/17/9/13
    [7]FU Wenjie (傅文杰), YAN Yang (鄢扬). Analysis of High-Power Microwave Propagation in a Magnetized Plasma Filled Waveguide[J]. Plasma Science and Technology, 2013, 15(10): 974-978. DOI: 10.1088/1009-0630/15/10/03
    [8]YANG Dong (杨东), LU Jingbin (陆景彬), LIU Yunzuo (刘运祚), MA Keyan (马克岩), WANG Huidong (王辉东), WANG Lielin (王烈林), LIU Gongye (刘弓冶), LI Li (李黎), MA Yingjun (马英君), ZHU Lihua (竺礼华), et al. High-k structures in 124Cs[J]. Plasma Science and Technology, 2012, 14(7): 607-609. DOI: 10.1088/1009-0630/14/7/09
    [9]Yu Beibei (于蓓蓓), Zhu Lihua (竺礼华), He Chuangye (贺创业), Wu Xiaoguang (吴晓光), Zheng Yun (郑云), Li Guangsheng (李广生), Wang Lielin (王烈林), Yao Shunhe (姚顺和), Zhang Biao (张彪), Xu Chuan (徐川), Hao Xin, et al. High Spin Structure in 106Pd[J]. Plasma Science and Technology, 2012, 14(6): 531-533. DOI: 10.1088/1009-0630/14/6/22
    [10]ZHU Shengjiang(朱胜江), GU Long(顾龙), WANG Jianguo(王建国), XIAO Zhigang(肖志刚), Yeoh Eingyee(杨韵颐), ZHANG Ming(张明), LIU Yu(刘宇), DING Huaibo(丁怀博), ZHU Lihua(竺礼华), WU Xiaoguang(吴晓光), HE Chuangy, et al. High-Spin States in 141Pm[J]. Plasma Science and Technology, 2012, 14(6): 496-498. DOI: 10.1088/1009-0630/14/6/13
  • Cited by

    Periodical cited type(1)

    1. Linczuk, P., Wojeński, A., Czarski, T. et al. Heterogeneous Online Computational Platform for GEM-Based Plasma Impurity Monitoring Systems. Energies, 2024, 17(22): 5539. DOI:10.3390/en17225539

    Other cited types(0)

Catalog

    Article views (196) PDF downloads (229) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return