Advanced Search+
Yanghaichao LIU (刘杨海超), Liping LIAN (连莉萍), Weixuan ZHAO(赵玮璇), Renxi ZHANG (张仁熙), Huiqi HOU (侯惠奇). DBD coupled with MnOx/γ-Al2O3 catalysts for the degradation of chlorobenzene[J]. Plasma Science and Technology, 2020, 22(3): 34016-034016. DOI: 10.1088/2058-6272/ab69bc
Citation: Yanghaichao LIU (刘杨海超), Liping LIAN (连莉萍), Weixuan ZHAO(赵玮璇), Renxi ZHANG (张仁熙), Huiqi HOU (侯惠奇). DBD coupled with MnOx/γ-Al2O3 catalysts for the degradation of chlorobenzene[J]. Plasma Science and Technology, 2020, 22(3): 34016-034016. DOI: 10.1088/2058-6272/ab69bc

DBD coupled with MnOx/γ-Al2O3 catalysts for the degradation of chlorobenzene

Funds: The financial support for this research was provided by National Natural Science Foundation of China (No. 21577023), the Special Research Project on Causes and Control Technology of Air Pollution (Nos. 2017YFC0212905), and the Science and Technology Innovation Action Project Supported by the Science and Technology Commission of Shanghai Municipality (No. 18DZ1202605).
More Information
  • Received Date: August 31, 2019
  • Revised Date: January 06, 2020
  • Accepted Date: January 08, 2020
  • This paper investigates the degradation of chlorobenzene by dielectric barrier discharge (DBD) coupled with MnOx/γ-Al2O3 catalysts. MnOx/γ-Al2O3 catalysts were prepared using the impregnation method and were characterized in detail by N2 adsorption/desorption, x-ray diffraction and x-ray photoelectron spectroscopy. Compared with the single DBD reactor, the coupled reactor has a better performance on the removal rate of chlorobenzene, the selectivity of COx, and the inhibition of ozone production, especially at low discharge voltages. The degradation rate of chlorobenzene and selectivity of COx can reach 96.3% and 53.0%, respectively, at the specific energy density of 1350 J l–1. Moreover, the ozone concentration produced by the discharge is significantly reduced because the MnOx/Al2O3 catalysts contribute to the decomposition of ozone to form oxygen atoms for the oxidation of chlorobenzene. In addition, based on analysis of the byproducts, the decomposition mechanism of chlorobenzene in the coupled reactor is also discussed.
  • [1]
    Haas J R et al 1999 Geochim. Cosmochim. Acta 63 3429
    [2]
    Dobrzyńska E et al 2010 Crit. Rev. Anal. Chem. 40 41
    [3]
    Guo Y Y et al 2013 Adsorption 19 1109
    [4]
    Guo Y Y et al 2014 Chem. Eng. J. 236 506
    [5]
    Jou C J G et al 2010 Environ. Prog. Sustain. Energy 29 272
    [6]
    Chin C J M et al 2010 Appl. Surf. Sci. 256 6035
    [7]
    Yuzawa H et al 2011 J. Phys. Chem. Lett. 2 1868
    [8]
    Zhao X Y et al 2018 Environ. Sci. Pollut. Res. 25 31219
    [9]
    Cheng Z W et al 2016 J. Environ. Sci. 46 203
    [10]
    Fazekas P et al 2013 Plasma Chem. Plasma Process. 33 765
    [11]
    Higgins B et al 2001 Chemosphere 42 703
    [12]
    Weng X L et al 2017 Environ. Sci. Technol. 51 8057
    [13]
    Yang P et al 2013 Chem. Eng. J. 234 203
    [14]
    Yang P et al 2015 Appl. Catal. B Environ. 162 227
    [15]
    Debecker D P et al 2010 Catal. Today 157 125
    [16]
    Yuan C et al 2018 React. Kinet. Mech. Catal. 125 757
    [17]
    Yang P et al 2018 Appl. Catal. B Environ. 239 114
    [18]
    Liu X L et al 2019 J. Hazard. Mater. 363 90
    [19]
    Giraudon J M, Elhachimi A and Leclercq G 2008 Appl. Catal.B Environ. 84 251
    [20]
    Ma T P et al 2016 Plasma Sci. Technol. 18 686
    [21]
    Sivachandiran L, Karuppiah J and Subrahmanyam C 2012 Int.J. Chem. React. Eng. 10 A62
    [22]
    Rohani V et al 2017 Chem. Eng. J. 309 471
    [23]
    Chang T et al 2018 Chem. Eng. J. 348 15
    [24]
    Norsic C et al 2018 Chem. Eng. J. 347 944
    [25]
    Qin C H et al 2016 Chemosphere 162 125
    [26]
    Mei D H et al 2016 Appl. Catal. B Environ. 182 525
    [27]
    Jiang L Y et al 2016 J. Chem. Technol. Biotechnol. 91 3079
    [28]
    Trinh Q H and Mok Y S 2015 Catalysts 5 800
    [29]
    Xu N et al 2014 Plasma Chem. Plasma Process. 34 1387
    [30]
    Jiang N et al 2019 Appl. Catal. B Environ. 259 118061
    [31]
    Jiang N et al 2018 Chem. Eng. J. 350 12
    [32]
    Jiang N et al 2019 J. Hazard. Mater. 369 611
    [33]
    Pan K L and Chang M B 2019 Environ. Sci. Pollut. Res. 26 12948
    [34]
    Kim S C and Shim W G 2010 Appl. Catal. B Environ. 98 180
    [35]
    Liu Y et al 2001 J. Catal. 202 200
    [36]
    Fan X Y et al 2011 Catal. Lett. 141 158
    [37]
    Wan Y L, Xie X Y and Chen X J 2017 Prog. React. Kinet.Mech. 42 259
    [38]
    Nguyen Dinh M T et al 2016 J. Hazard. Mater. 314 88
    [39]
    Jin D D et al 2015 RSC Adv. 5 15103
    [40]
    Wang H C et al 2011 J. Hazard. Mater. 186 1781
    [41]
    Veerapandian S K P et al 2019 J. Hazard. Mater. 379 120781
    [42]
    Dinh M T N et al 2015 Appl. Catal. B Environ. 172–173 65
    [43]
    Li D et al 2008 Plasma Sci. Technol. 10 94
    [44]
    Sultana S et al 2019 Appl. Catal. B Environ. 253 49
    [45]
    Duan J J et al 2014 Adv. Funct. Mater. 24 2072
    [46]
    Gao F et al 2014 Carbon 80 640
    [47]
    Feng X B et al 2020 J. Hazard. Mater. 383 121143
    [48]
    Araújo M P et al 2019 J. Mater. Sci. 54 8919
    [49]
    Grootendorst E J, Verbeek Y and Ponec V 1995 J. Catal.157 706
    [50]
    Durand J P et al 2010 J. Phys. Chem. C 114 20000
    [51]
    Zhu X B et al 2016 Appl. Catal. B Environ. 183 124
    [52]
    Liu G et al 2013 Particuology 11 454
    [53]
    Atkinson R and Carter W P L 1984 Chem. Rev. 84 437
    [54]
    Guo Y F et al 2006 J. Mol. Catal. A Chem. 245 93
    [55]
    Stevens W R, Ruscic B and Baer T 2010 J. Phys. Chem. A 114 13134
    [56]
    Wenthold P G and Squires R R 1994 J. Am. Chem. Soc.116 6401
    [57]
    Kohno H et al 1998 IEEE Trans. Ind. Appl. 34 953
  • Related Articles

    [1]Baowei WANG (王保伟), Chao WANG (王超), Shumei YAO (姚淑美), Yeping PENG (彭叶平), Yan XU (徐艳). Plasma-catalytic degradation of tetracycline hydrochloride over Mn/γ-Al2O3 catalysts in a dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2019, 21(6): 65503-065503. DOI: 10.1088/2058-6272/ab079c
    [2]Yanqin LIU (刘彦琴), Guangning WU (吴广宁), Guoqiang GAO (高国强), Jianyi XUE (薛建议), Yongqiang KANG (康永强), Chaoqun SHI (石超群). Surface charge accumulation behavior and its influence on surface flashover performance of Al2O3-filled epoxy resin insulators under DC voltages[J]. Plasma Science and Technology, 2019, 21(5): 55501-055501. DOI: 10.1088/2058-6272/aafdf7
    [3]R DEBEK, D WIERZBICKI, M MOTAK, M E GALVEZ, P DA COSTA, F AZZOLINA-JURY. Operando FT-IR study on basicity improvement of Ni(Mg, Al)O hydrotalcite-derived catalysts promoted by glow plasma discharge[J]. Plasma Science and Technology, 2019, 21(4): 45503-045503. DOI: 10.1088/2058-6272/aaf759
    [4]Haiying WEI (魏海英), Hongge GUO (郭红革), Lijun SANG (桑利军), Xingcun LI (李兴存), Qiang CHEN (陈强). Study on deposition of Al2O3 films by plasma-assisted atomic layer with different plasma sources[J]. Plasma Science and Technology, 2018, 20(6): 65508-065508. DOI: 10.1088/2058-6272/aaacc7
    [5]LIU (刘泽), Guogang YU (余国刚), Anping HE (何安平), Ling WANG (王玲). Simulation of thermal stress in Er2O3 and Al2O3 tritium penetration barriers by finite-element analysis[J]. Plasma Science and Technology, 2017, 19(9): 95602-095602. DOI: 10.1088/2058-6272/aa719d
    [6]XIONG Yuqing, SANG Lijun, CHEN Qiang, YANG Lizhen, WANG Zhengduo, LIU Zhongwei. Electron Cyclotron Resonance Plasma-Assisted Atomic Layer Deposition of Amorphous Al2O3 Thin Films[J]. Plasma Science and Technology, 2013, 15(1): 52-55. DOI: 10.1088/1009-0630/15/1/09
    [7]CHEN Shaowen(陈少文), ZHANG Wenlan(张文澜), FAN Lixian(范丽仙), TANG Qiang(唐强), LIU Xiaowei(刘小伟). The Effect of the Size of Radiotherapy Photon Beams on the Absorbed Dose to an Al2O3 Dosimeter[J]. Plasma Science and Technology, 2012, 14(6): 558-562. DOI: 10.1088/1009-0630/14/6/28
    [8]LEI Wenwen(雷雯雯), LI Xingcun(李兴存), CHEN Qiang (陈强), WANG Zhengduo(王正铎). Plasma-Assisted ALD of an Al2O3 Permeation Barrier Layer on Plastic[J]. Plasma Science and Technology, 2012, 14(2): 129-133. DOI: 10.1088/1009-0630/14/2/09
    [9]LIU Gu, WANG Liuying, CHEN Guiming, HUA Shaochun, ZHU Erlei. Effect of Spraying Parameters on the Microstructure and Mechanical Properties of Micro-Plasma Sprayed Alumina-Titania Coatings[J]. Plasma Science and Technology, 2011, 13(4): 474-479.
    [10]LI Shengtao, ZHANG Tuo, HUANG Qifeng, LI Weiwei, NI Fengyan, LI Jianying. Improvement of Surface Flashover Performance of Al2O3 Ceramics in Vacuum by Adopting A-B-A Insulation System[J]. Plasma Science and Technology, 2011, 13(2): 235-241.
  • Cited by

    Periodical cited type(23)

    1. Gao, X., Deng, Y., Wei, Z. et al. Catalytic oxidation of volatile organic compounds by plasma–metal oxide coupling. Journal of Environmental Chemical Engineering, 2025, 13(2): 116045. DOI:10.1016/j.jece.2025.116045
    2. Qu, M., Zheng, Y., Cheng, Z. et al. Mechanism of chlorobenzene removal in biotrickling filter enhanced by non-thermal plasma: Insights from biodiversity and functional gene perspectives. Bioresource Technology, 2025. DOI:10.1016/j.biortech.2024.131931
    3. Zang, X., Sun, H., Wang, W. et al. Plasma-catalytic removal of toluene over bimetallic M/Mn-BTC catalysts in dielectric barrier discharge reactor. Separation and Purification Technology, 2024. DOI:10.1016/j.seppur.2023.125667
    4. Zhang, W., Xing, Y., Hao, L. et al. Effect of gas components on the degradation mechanism of o-dichlorobenzene by non-thermal plasma technology with single dielectric barrier discharge. Chemosphere, 2023. DOI:10.1016/j.chemosphere.2023.139866
    5. Zhang, L., Zou, Z., Lei, Z. et al. Research on the Mechanism of Synergistic Treatment of VOCs–O3 by Low Temperature Plasma Catalysis Technology. Plasma Chemistry and Plasma Processing, 2023, 43(6): 1651-1672. DOI:10.1007/s11090-023-10366-3
    6. Tao, Y., Xu, Y., Chang, K. et al. Dielectric barrier discharge plasma synthesis of Ag/γ-Al2O3 catalysts for catalytic oxidation of CO. Plasma Science and Technology, 2023, 25(8): 085504. DOI:10.1088/2058-6272/acc14c
    7. Shi, X., Liang, W., Yin, G. et al. Degradation of chlorobenzene by non-thermal plasma coupled with catalyst: influence of catalyst, interaction between plasma and catalyst. Plasma Science and Technology, 2023, 25(5): 055506. DOI:10.1088/2058-6272/acae56
    8. Huang, H., He, L., Wang, Y. et al. Experimental study on toluene removal by a two-stage plasma-biofilter system. Plasma Science and Technology, 2022, 24(12): 124011. DOI:10.1088/2058-6272/aca582
    9. Shi, X., Liang, W., Yin, G. et al. Effect of the factors on the mixture of toluene and chlorobenzene degradation by non-thermal plasma. Journal of Environmental Chemical Engineering, 2022, 10(6): 108927. DOI:10.1016/j.jece.2022.108927
    10. Shi, X., Liang, W., Yin, G. et al. Degradation of chlorobenzene by non-thermal plasma with Mn based catalyst | [低温等离子体协同 Mn 基催化剂降解氯苯研究]. Huagong Xuebao/CIESC Journal, 2022, 73(10): 4472-4483. DOI:10.11949/0438-1157.20220696
    11. Zhu, X., Xiong, H., Liu, J. et al. Plasma-enhanced catalytic oxidation of ethylene oxide over Fe–Mn based ternary catalysts. Journal of the Energy Institute, 2022. DOI:10.1016/j.joei.2022.06.002
    12. Zhu, X., Wu, X., Liu, J. et al. Soot Oxidation over γ-Al2O3-Supported Manganese-Based Binary Catalyst in a Dielectric Barrier Discharge Reactor. Catalysts, 2022, 12(7): 716. DOI:10.3390/catal12070716
    13. Yu, X., Dang, X., Li, S. et al. Abatement of chlorobenzene by plasma catalysis: Parameters optimization through response surface methodology (RSM), degradation mechanism and PCDD/Fs formation. Chemosphere, 2022. DOI:10.1016/j.chemosphere.2022.134274
    14. Gu, J., Shen, X., Liang, X. et al. Research on the removal of H2S using dielectric barrier discharge combined with photocatalysis and the fate of sulfur in the reaction. Chemical Engineering and Processing - Process Intensification, 2022. DOI:10.1016/j.cep.2022.108984
    15. Li, Y., Lv, J., Xu, Q. et al. Study of the Treatment of Organic Waste Gas Containing Benzene by a Low Temperature Plasma-Biological Degradation Method. Atmosphere, 2022, 13(4): 622. DOI:10.3390/atmos13040622
    16. Chang, T., Ma, C., Nikiforov, A. et al. Plasma degradation of trichloroethylene: Process optimization and reaction mechanism analysis. Journal of Physics D: Applied Physics, 2022, 55(12): 125202. DOI:10.1088/1361-6463/ac40bb
    17. Lin, Q., Peng, H., Xie, W. et al. Evaluation catalytic performance of Ag/TiO2 in dielectric barrier discharge plasma. Vacuum, 2022. DOI:10.1016/j.vacuum.2021.110844
    18. Xie, L., Lu, J., Ye, G. et al. Decomposition of gaseous chlorobenzene using a DBD combined CuO/α-Fe2O3 catalysis system. Environmental Technology (United Kingdom), 2022, 43(18): 2743-2754. DOI:10.1080/09593330.2021.1899292
    19. Li, S., Yu, X., Dang, X. et al. Non-thermal plasma coupled with MOx/γ-Al2O3 (M: Fe, Co, Mn, Ce) for chlorobenzene degradation: Analysis of byproducts and the reaction mechanism. Journal of Environmental Chemical Engineering, 2021, 9(6): 106562. DOI:10.1016/j.jece.2021.106562
    20. Jin, X., Wang, G., Lian, L. et al. Chlorobenzene removal using dbd coupled with cuo/γ-al2 o3 catalyst. Applied Sciences (Switzerland), 2021, 11(14): 6433. DOI:10.3390/app11146433
    21. Zhou, W., Ye, Z., Nikiforov, A. et al. The influence of relative humidity on double dielectric barrier discharge plasma for chlorobenzene removal. Journal of Cleaner Production, 2021. DOI:10.1016/j.jclepro.2020.125502
    22. Zhao, Y., Ye, K., Zhuang, Y. et al. Progress of manganese catalysts for non-thermal plasma catalysis on VOCs degradation. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2020, 39(S2): 175-184. DOI:10.16085/j.issn.1000-6613.2020-1111
    23. Wang, R., Ren, J., Wu, J. et al. Characteristics and mechanism of toluene removal by double dielectric barrier discharge combined with an Fe2O3/TiO2/γ-Al2O3catalyst. RSC Advances, 2020, 10(68): 41511-41522. DOI:10.1039/d0ra07938c

    Other cited types(0)

Catalog

    Article views (126) PDF downloads (103) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return