Advanced Search+
Tingting MEI (梅婷婷), Ming GAO (高明), Danni LIU (刘丹妮), Yu WANG (王裕), Yifan HUANG (黄逸凡). Enhanced electrocatalytic activity of carbon cloth by synergetic effect of plasma and acid treatment[J]. Plasma Science and Technology, 2021, 23(2): 25504-025504. DOI: 10.1088/2058-6272/abd8b4
Citation: Tingting MEI (梅婷婷), Ming GAO (高明), Danni LIU (刘丹妮), Yu WANG (王裕), Yifan HUANG (黄逸凡). Enhanced electrocatalytic activity of carbon cloth by synergetic effect of plasma and acid treatment[J]. Plasma Science and Technology, 2021, 23(2): 25504-025504. DOI: 10.1088/2058-6272/abd8b4

Enhanced electrocatalytic activity of carbon cloth by synergetic effect of plasma and acid treatment

Funds: This work was funded by Shenzhen Science and Technology Innovation Committee (No. JCYJ20180507182200750).
More Information
  • Received Date: October 19, 2020
  • Revised Date: January 03, 2021
  • Accepted Date: January 04, 2021
  • Commercial carbon cloth (CC) is an ideal electrocatalysis material to produce oxygen evolution reaction (OER) due to its high conductive and 3D flexible structure, but the lacked active sites limit its application. For improving its OER performance, the present study proposed an effective method combining plasma and acid treatment to introduce oxygen-containing functional groups and produce more active sites on its surface. Compared to the pristine CC, the plasma and acid treated carbon cloth (PN-CC) delivers a reduced overpotential by 34.6% to achieve current density of 10 mA cm−2. The Tafel slope declines from 97.5 mV dec–1 (pristine CC) to 55.9 mV dec–1 (PN-CC), showing an increased OER kinetic. Additionally, PN-CC electrocatalyst shows outstanding stability after 5000 cycles or 25 000 s. The combination of plasma and acid treatment shows a significant potential in surface modification for electrocatalysts.
  • [1]
    Galani S M et al 2020 Int. J. Hydrog. Energy 45 18635
    [2]
    Yuan Y J et al 2016 ACS Catal. 6 532
    [3]
    Hunter B M, Gray H B and Müller A M 2016 Chem. Rev. 116 14120
    [4]
    Evans T A and Choi K S 2020 ACS Appl. Energy Mater.3 5563
    [5]
    Huang J et al 2020 ACS Sustain. Chem. Eng. 8 10554
    [6]
    Yu X X et al 2019 Int. J. Hydrog. Energy 44 29717
    [7]
    Seitz L C et al 2016 Science 353 1011
    [8]
    Lee Y et al 2012 J. Phys. Chem. Lett. 3 399
    [9]
    Gao X H et al 2016 Angew. Chem. Int. Ed. 55 6290
    [10]
    Wang W et al 2018 J. Mater. Chem. A 6 14299
    [11]
    Zhang C et al 2018 Surf. Coat. Technol. 347 407
    [12]
    Zhao Z et al 2018 Adv. Sci. 5 1800760
    [13]
    Chodankar N R et al 2018 J. Electrochem. Soc. 165 A2446
    [14]
    Owusu K A et al 2020 Chin. Chem. Lett. 31 1620
    [15]
    Huang D K et al 2018 Carbon 129 468
    [16]
    Cheng N Y et al 2015 Chem. Commun. 51 1616
    [17]
    Wu T X et al 2019 Chem. Commun. 55 2344
    [18]
    Chen Y Y et al 2019 J. Electrochem. Soc. 167 056501
    [19]
    Adusei P K et al 2020 J. Energy Chem. 40 120
    [20]
    Pereira J F S et al 2019 Electrochem. Commun. 105 106497
    [21]
    Liu T Q et al 2019 ACS Appl. Energy Mater. 2 5162
    [22]
    Dixon D et al 2016 J. Power Sources 332 240
    [23]
    Chang S H et al 2016 J. Power Sources 336 99
    [24]
    Naseh M V et al 2010 Carbon 48 1369
    [25]
    Gao M et al 2020 Surf. Coat. Technol. 404 126498
    [26]
    Lin J H et al 2018 J. Mater. Chem. A 6 908
    [27]
    Li L Q et al 2017 ACS Energy Lett. 2 294
    [28]
    Lu X Y et al 2015 J. Am. Chem. Soc. 137 2901
    [29]
    Ren C L et al 2020 J. Colloid Interface Sci. 569 298
    [30]
    Gao M et al 2019 Nanomaterials 9 568
    [31]
    Chien H H et al 2018 Electrochim. Acta 260 391
    [32]
    Dutta A and Pradhan N 2017 J. Phys. Chem. Lett. 8 144
    [33]
    Bajdich M et al 2013 J. Am. Chem. Soc. 135 13521
    [34]
    Shinagawa T, Garcia-Esparza A T and Takanabe K 2015 Sci.Rep. 5 13801
    [35]
    Ge R X et al 2019 Adv. Energy Mater. 9 1901313
    [36]
    Wu A P et al 2018 Nano Energy 44 353
    [37]
    McCrory C C L et al 2015 J. Am. Chem. Soc. 137 4347
    [38]
    Meng J et al 2018 ACS Appl. Mater. Interfaces 10 13652
    [39]
    Zhao Y et al 2013 Nat. Commun. 4 2390
    [40]
    Qin J J et al 2020 Compos. Sci. Technol. 195 108198
    [41]
    Zhou J H et al 2017 Int. J. Hydrog. Energy 42 27004
  • Related Articles

    [1]J A JUAREZ-MORENO, U CHACON-ARGAEZ, J BARRON-ZAMBRANO, C CARRERA-FIGUEIRAS, P QUINTANA-OWEN, W TALAVERA-PECH, Y PEREZ-PADILLA, A AVILA-ORTEGA. Effect of inductively coupled plasma surface treatment on silica gel and mesoporous MCM-41 particles[J]. Plasma Science and Technology, 2018, 20(6): 65506-065506. DOI: 10.1088/2058-6272/aaabb5
    [2]Ahmed RIDA GALALY, Guido VAN OOST. Environmental and economic vision of plasma treatment of waste in Makkah[J]. Plasma Science and Technology, 2017, 19(10): 105503. DOI: 10.1088/2058-6272/aa77ef
    [3]Zhiyu YAN (严志宇), Xin WANG (王鑫), Bing SUN (孙冰), Mi WEN (文密), Yue HAN (韩月). Catalytic technology for water treatment by micro arc oxidation on Ti–Al alloy[J]. Plasma Science and Technology, 2017, 19(3): 35501-035501. DOI: 10.1088/2058-6272/19/3/035501
    [4]LI Hongtao (李洪涛), KAN Jinfeng (阚金峰), JIANG Bailing (蒋百灵), LIU Yanjie (刘燕婕), LIU Zheng (刘政). Study of the Deburring Process for Low Carbon Steel by Plasma Electrolytic Oxidation[J]. Plasma Science and Technology, 2016, 18(8): 860-864. DOI: 10.1088/1009-0630/18/8/12
    [5]GU Ling(古玲). Esterification by the Plasma Acidic Water: Novel Application of Plasma Acid[J]. Plasma Science and Technology, 2014, 16(3): 223-225. DOI: 10.1088/1009-0630/16/3/09
    [6]LI Zebin(李泽斌), WU Zhonghang(吴忠航), JU Jiaqi(居家奇), HE Kongduo(何孔多), CHEN Zhenliu(陈枕流), YANG Xilu(杨曦露), YAN Hang(颜航), OU Qiongrong(区琼荣), LIANG Rongqing(梁荣庆). Enhanced Work Function of Al-Doped Zinc-Oxide Thin Films by Oxygen Inductively Coupled Plasma Treatment[J]. Plasma Science and Technology, 2014, 16(1): 79-82. DOI: 10.1088/1009-0630/16/1/17
    [7]JI Puhui (吉普辉), QU Guangzhou (屈广周), LI Jie (李杰). Effects of Dielectric Barrier Discharge Plasma Treatment on Pentachlorophenol Removal of Granular Activated Carbon[J]. Plasma Science and Technology, 2013, 15(10): 1059-1065. DOI: 10.1088/1009-0630/15/10/18
    [8]S. SHAHIDI, M. GHORANNEVISS. Sterilization of Cotton Fabrics Using Plasma Treatment[J]. Plasma Science and Technology, 2013, 15(10): 1031-1033. DOI: 10.1088/1009-0630/15/10/13
    [9]V. PRYSIAZHNYI. Plasma Treatment of Aluminum Using a Surface Barrier Discharge Operated in Air and Nitrogen: Parameter Optimization and Related Effects[J]. Plasma Science and Technology, 2013, 15(8): 794-799. DOI: 10.1088/1009-0630/15/8/15
    [10]DIAO Ying, XU Jinzhou, HU Qianqian, ZHANG Jing, SHI Jianjun, GUO Ying. Electrical and Optical Characterization of Dielectric Barrier Discharge and Its Application to Plasma Treatment of Poly (ethylene terephtalate) (PET) Fibers[J]. Plasma Science and Technology, 2011, 13(6): 641-644.
  • Cited by

    Periodical cited type(8)

    1. Xiao, W., Li, Y., Zhang, Y. et al. Recent Development of Fibrous Materials for Electrocatalytic Water Splitting. Applied Energy, 2025. DOI:10.1016/j.apenergy.2025.125809
    2. Wang, S., Wang, Y., Gao, M. et al. Aging Effect of Plasma-Treated Carbon Fiber Surface: From an Engineering Point. Coatings, 2024, 14(1): 80. DOI:10.3390/coatings14010080
    3. Li, J., Yuan, L., Wu, Z. et al. Synergetic surface modification of 3D braided carbon fiber-reinforced composites for enhancing mechanical strength. Applied Surface Science, 2023. DOI:10.1016/j.apsusc.2023.158189
    4. Sowmya, S., Vijaikanth, V. g-C3N4/Chlorocobaloxime Nanocomposites as Multifunctional Electrocatalysts for Water Splitting and Energy Storage. ACS Omega, 2023, 8(36): 32940-32954. DOI:10.1021/acsomega.3c04347
    5. Rashed, A.O., Huynh, C., Merenda, A. et al. Carbon nanofibre microfiltration membranes tailored by oxygen plasma for electrocatalytic wastewater treatment in cross-flow reactors. Journal of Membrane Science, 2023. DOI:10.1016/j.memsci.2023.121475
    6. Jiang, J., Jin, B., Meng, L. Research progress of non-noble metal catalysts based on electrocatalytic oxygen evolution reaction | [基于电催化析氧反应的非贵金属催化剂研究进展]. Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2023, 40(3): 1365-1380. DOI:10.13801/j.cnki.fhclxb.20220819.001
    7. Xu, J., Zhang, Y.-Q., Zhu, X.-B. et al. Boosting catalytic activities of carbon felt electrode towards redox reactions of vanadium ions by defect engineering | [利用缺陷工程提高碳毡电极对钒离子的氧化还原催化活性]. Journal of Central South University, 2022, 29(9): 2956-2967. DOI:10.1007/s11771-022-5129-z
    8. Mei, T., Gao, M., Wang, Y. et al. Effects of acid treatment and plasma micromachining on the surface properties of carbon fibers. Applied Surface Science, 2022. DOI:10.1016/j.apsusc.2022.153261

    Other cited types(0)

Catalog

    Article views (133) PDF downloads (231) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return