Advanced Search+
Mamat Ali BAKE, Arzigul ELAJI. Photon and positron production by ultrahigh-intensity laser interaction with various plasma foils[J]. Plasma Science and Technology, 2021, 23(4): 45001-045001. DOI: 10.1088/2058-6272/abeb04
Citation: Mamat Ali BAKE, Arzigul ELAJI. Photon and positron production by ultrahigh-intensity laser interaction with various plasma foils[J]. Plasma Science and Technology, 2021, 23(4): 45001-045001. DOI: 10.1088/2058-6272/abeb04

Photon and positron production by ultrahigh-intensity laser interaction with various plasma foils

More Information
  • Received Date: December 14, 2020
  • Revised Date: February 27, 2021
  • Accepted Date: February 29, 2020
  • The generation of γ photons and positrons using an ultrahigh-intensity laser pulse interacting with various plasma solid foils is investigated with a series of quantum electrodynamic particle-in-cell (PIC) simulations. When ultrahigh-intensity lasers interact with plasma foils, a large amount of the laser energy is converted into γ photon energy. The simulation results indicate that for a fixed laser intensity with different foil densities, the conversion efficiency of the laser to γ photons and the number of produced photons are highly related to the foil density. We determine the optimal foil density by PIC simulations for high conversion efficiencies as approximately 250 times the critical plasma density, and this result agrees very well with our theoretical assumptions. Four different foil thicknesses are simulated and the effects of foil thickness on γ photon emission and positron production are discussed. The results indicate that optimal foil thickness plays an important role in obtaining the desired γ photon and positron production according to the foil density and laser intensity. Further, a relation between the laser intensity and conversion efficiency is present for the optimal foil density and thickness.
  • [1]
    Danson C et al 2015 High Power Laser Sci. Eng. 3 e3
    [2]
    Turcu I C E et al 2016 Rom. Rep. Phys. 68 S145 (www.eli-np.ro/scientific-papers/S145.pdf)
    [3]
    Mourou G et al 2013 Nat. Photonics 7 258
    [4]
    Papadopoulos D N et al 2016 High Power Laser Sci. Eng. 4 E34
    [5]
    Ehlotzky F et al 2009 Rep. Prog. Phys. 72 046401
    [6]
    Di Piazza A et al 2012 Rev. Mod. Phys. 84 1177
    [7]
    Gonoskov A A et al 2013 Phys. Rev. Lett. 111 060404
    [8]
    Lei B F et al 2018 Phys. Rev. Lett. 120 134801
    [9]
    Zhu X L et al 2016 Nat. Commun. 7 13686
    [10]
    Benedetti A et al 2018 Nat. Photonics 12 319
    [11]
    Tamburini M et al 2017 Sci. Rep. 7 5694
    [12]
    Gales S et al 2016 Phys. Scripta 91 093004
    [13]
    Liang E 2013 High Energy Density Phys. 9 425
    [14]
    Chen P and Mourou G 2017 Phys. Rev. Lett. 118 045001
    [15]
    Glinec Y et al 2005 Phys. Rev. Lett. 94 025003
    [16]
    Yoon D K et al 2014 Appl. Phys. Lett. 104 083521
    [17]
    Wu Y C et al 2011 Phys. Rev. B 84 064123
    [18]
    Bell A R and Kirk J G 2008 Phys. Rev. Lett. 101 200403
    [19]
    Ridgers C P et al 2013 Phys. Plasmas 20 056701
    [20]
    Ridgers C P et al 2012 Phys. Rev. Lett. 108 165006
    [21]
    Danielson J R et al 2015 Rev. Mod. Phys. 87 247
    [22]
    Grismayer T et al 2017 Phys. Rev. E 95 023210
    [23]
    Tang S et al 2014 Phys. Rev. A 89 022105
    [24]
    Augustin S and Müller C 2012 Phys. Rev. A 88 22109
    [25]
    Krajewska K and Kamiński J Z 2012 Phys. Rev. A 86 052104
    [26]
    Shen B F and Meyer-ter-Vehn J 2001 Phys. Rev. E 65 016405
    [27]
    Hu H Y, Müller C and Keitel C H 2010 Phys. Rev. Lett. 105 80401
    [28]
    Ilderton A 2011 Phys. Rev. Lett. 106 020404
    [29]
    Bake M A et al 2018 Front. Phys. 13 135202
    [30]
    Bake M A et al 2020 Plasma Sci. Technol. 22 105201
    [31]
    Wan F et al 2017 Plasma Sci. Technol. 19 075201
    [32]
    Arber T D et al 2015 Plasma Phys. Control. Fusion 57 113001
    [33]
    Wang X M et al 2013 Nat. Commun. 4 1988
    [34]
    Bake M A et al 2016 Phys. Plasmas 23 083107
    [35]
    Lei A L et al 2009 Phys. Plasmas 16 020702
    [36]
    Lv C et al 2017 Plasma Phys. Control. Fusion 59 025006
    [37]
    Bartal T et al 2012 Nat. Phys. 8 139
    [38]
    Ji L L et al 2014 Phys. Plasmas 21 023109
    [39]
    Jirka M et al 2017 Sci. Rep. 7 15302
  • Related Articles

    [1]Rajesh Prakash GURAGAIN, Hom Bahadur BANIYA, Santosh DHUNGANA, Ganesh Kuwar CHHETRI, Binita SEDHAI, Niroj BASNET, Aavash SHAKYA, Bishnu Prasad PANDEY, Suman Prakash PRADHAN, Ujjwal Man JOSHI, Deepak Prasad SUBEDI. Effect of plasma treatment on the seed germination and seedling growth of radish (Raphanus sativus)[J]. Plasma Science and Technology, 2022, 24(1): 015502. DOI: 10.1088/2058-6272/ac3476
    [2]M M RASHID, Mamunur RASHID, M M HASAN, M R TALUKDER. Rice plant growth and yield: foliar application of plasma activated water[J]. Plasma Science and Technology, 2021, 23(7): 75503-075503. DOI: 10.1088/2058-6272/abf549
    [3]Sahar A FADHLALMAWLA, Abdel-Aleam H MOHAMED, Jamal Q M ALMARASHI, Tahar BOUTRAA. The impact of cold atmospheric pressure plasma jet on seed germination and seedlings growth of fenugreek (Trigonella foenum-graecum)[J]. Plasma Science and Technology, 2019, 21(10): 105503. DOI: 10.1088/2058-6272/ab2a3e
    [4]N C ROY, M M HASAN, A H KABIR, M A REZA, M R TALUKDER, A N CHOWDHURY. Atmospheric pressure gliding arc discharge plasma treatments for improving germination, growth and yield of wheat[J]. Plasma Science and Technology, 2018, 20(11): 115501. DOI: 10.1088/2058-6272/aac647
    [5]Jinkui FENG (冯金奎), Decheng WANG (王德成), Changyong SHAO (邵长勇), Lili ZHANG (张丽丽), Xin TANG (唐欣). Effects of cold plasma treatment on alfalfa seed growth under simulated drought stress[J]. Plasma Science and Technology, 2018, 20(3): 35505-035505. DOI: 10.1088/2058-6272/aa9b27
    [6]LI Ling (李玲), LI Jiangang (李建刚), SHEN Minchong (申民翀), HOU Jinfeng (侯金凤), SHAO Hanliang (邵汉良), DONG Yuanhua (董元华), JIANG Jiafeng (蒋佳峰). Improving Seed Germination and Peanut Yields by Cold Plasma Treatment[J]. Plasma Science and Technology, 2016, 18(10): 1027-1033. DOI: 10.1088/1009-0630/18/10/10
    [7]TONG Jiayun(童家赟), HE Rui(何瑞), ZHANG Xiaoli(张晓丽), ZHAN Ruoting(詹若挺), CHEN Weiwen(陈蔚文), YANG Size(杨思泽). Effects of Atmospheric Pressure Air Plasma Pretreatment on the Seed Germination and Early Growth of Andrographis paniculata[J]. Plasma Science and Technology, 2014, 16(3): 260-266. DOI: 10.1088/1009-0630/16/3/16
    [8]DONG Xiaoyu(董晓宇), YUAN Yulian(袁玉莲), TANG Qian(唐乾), DOU Shaohua(窦少华), DI Lanbo(底兰波), ZHANG Xiuling(张秀玲). Parameter Optimization for Enhancement of Ethanol Yield by Atmospheric Pressure DBD-Treated Saccharomyces cerevisiae[J]. Plasma Science and Technology, 2014, 16(1): 73-78. DOI: 10.1088/1009-0630/16/1/16
    [9]JIANG Jiafeng(蒋佳峰), HE Xin(何昕), LI Ling(李玲), LI Jiangang(李建刚), SHAO Hanliang(邵汉良), XU Qilai(徐启来), YE Renhong(叶仁宏), DONG Yuanhua(董元华). Effect of Cold Plasma Treatment on Seed Germination and Growth of Wheat[J]. Plasma Science and Technology, 2014, 16(1): 54-58. DOI: 10.1088/1009-0630/16/1/12
    [10]LI Xiaoling (李晓玲), WAN Baonian (万宝年), GUO Zhirong (郭智荣), ZHONG Guoqiang (钟国强), HU Liqun (胡立群), LIN Shiyao (林士耀), ZHANG Xinjun (张新军), DING Siye (丁斯晔), LU Bo (吕波). Neutron Yields Based on Transport Calculation in EAST ICRF Minority Heating Plasmas[J]. Plasma Science and Technology, 2013, 15(5): 411-416. DOI: 10.1088/1009-0630/15/5/03

Catalog

    Article views (135) PDF downloads (293) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return