Advanced Search+
Lei LI (黎嫘), Ling ZHANG (张凌), Zong XU (许棕), Shigeru MORITA, Yunxin CHENG (程云鑫), Fengling ZHANG (张丰玲), Wenmin ZHANG (张文敏), Yanmin DUAN (段艳敏), Qing ZANG (臧庆), Shouxin WANG (王守信), Shuyu DAI (戴舒宇), Guizhong ZUO (左桂忠), Zhen SUN (孙震), Liang WANG (王亮), Xiaobin DING (丁晓彬), Jinping QIAN (钱金平), Haiqing LIU (刘海庆), Liqun HU (胡立群). Line identification of extreme ultraviolet (EUV) spectra from low-Z impurity ions in EAST tokamak plasmas[J]. Plasma Science and Technology, 2021, 23(7): 75102-075102. DOI: 10.1088/2058-6272/abfea2
Citation: Lei LI (黎嫘), Ling ZHANG (张凌), Zong XU (许棕), Shigeru MORITA, Yunxin CHENG (程云鑫), Fengling ZHANG (张丰玲), Wenmin ZHANG (张文敏), Yanmin DUAN (段艳敏), Qing ZANG (臧庆), Shouxin WANG (王守信), Shuyu DAI (戴舒宇), Guizhong ZUO (左桂忠), Zhen SUN (孙震), Liang WANG (王亮), Xiaobin DING (丁晓彬), Jinping QIAN (钱金平), Haiqing LIU (刘海庆), Liqun HU (胡立群). Line identification of extreme ultraviolet (EUV) spectra from low-Z impurity ions in EAST tokamak plasmas[J]. Plasma Science and Technology, 2021, 23(7): 75102-075102. DOI: 10.1088/2058-6272/abfea2

Line identification of extreme ultraviolet (EUV) spectra from low-Z impurity ions in EAST tokamak plasmas

Funds: This work is supported by National Key Research and Development Program of China (Nos. 2018YFE0311100, 2017YFE0300402, 2017YFE0301300), National Natural Science Foundation of China (Nos. Nos. 11905146, 11775269, U1832126, 11805133), Hefei Science Center High-end User Development Fund Project (2019HSC-UE014) and Chinese Academy of Sciences President's International Fellowship Initiative (PIFI) (2020VMA0001)
More Information
  • Received Date: March 25, 2021
  • Revised Date: April 29, 2021
  • Accepted Date: May 05, 2021
  • Extreme ultraviolet (EUV) spectra emitted from low-Z impurity ions in the wavelength range of 10–500 Å were observed in Experimental Advanced Superconducting Tokamak (EAST) discharges. Several spectral lines from K- and L-shell partially ionized ions were successfully observed with sufficient spectral intensities and resolutions for helium, lithium, boron, carbon, oxygen, neon, silicon and argon using two fast-time-response EUV spectrometers of which the spectral intensities are absolutely calibrated based on the intensity comparison method between visible and EUV bremsstrahlung continua. The wavelength is carefully calibrated using well-known spectra. The lithium, boron and silicon are individually introduced for the wall coating of the EAST vacuum vessel to suppress mainly the hydrogen and oxygen influxes from the vacuum wall, while the carbon and oxygen intrinsically exist in the plasma. The helium is frequently used as the working gas as well as the deuterium. The neon and argon are also often used for the radiation cooling of edge plasma to reduce the heat flux onto the divertor plate. The measured spectra were analyzed mainly based on the database of National Institute of Standards and Technology. As a result, spectral lines of He II, Li II–III, B IV–V, C III–VI, O III–VIII, Ne II–X, Si V–XII, and Ar X–XVI are identified in EAST plasmas of which the central electron temperature and chord-averaged electron density range in Te0 = 0.6–2.8 keV and ne = (0.5–6.0) × 1019 m−3, respectively. The wavelengths and transitions of EUV lines identified here are summarized and listed in a table for each impurity species as the database for EUV spectroscopy using fusion plasmas.
  • [1]
    Eckstein W, Bohdansky J and Roth J 1991 Suppl. Nucl. Fusion1 51 www-pub.iaea.org/MTCD/publications/PDF/Pub23_web.pdf
    [2]
    Roth J 1983 Chemical sputtering ed R Behrish Sputtering by Particle Bombardment II (Berlin: Springer)
    [3]
    Zhao X B et al 2004 Science 306 1012
    [4]
    Yao D M et al 2015 Fusion Eng. Des. 98–99 1692
    [5]
    Hu J S et al 2009 Fusion Eng. Des. 84 2167
    [6]
    Zuo G Z et al 2012 Plasma Phys. Control. Fusion 54015014
    [7]
    Sun Z et al 2014 Fusion Eng. Des. 89 2886
    [8]
    Sun Z et al 2019 Nucl. Mater. Energy 19 124
    [9]
    Hu J S et al 2015 Phys. Rev. Lett. 115 169901
    [10]
    Jackson G L et al 2002 Nucl. Fusion 42 28
    [11]
    Reimold F et al 2015 Nucl. Fusion 55 033004
    [12]
    Wang D S et al 2013 Plasma Sci. Technol. 15 614
    [13]
    Tokar M Z et al 1999 Plasma Phys. Control. Fusion 41 B317
    [14]
    Wu K et al 2018 Nucl. Fusion 58 056019
    [15]
    Zhou H Y et al 2014 Plasma Sci. Technol. 16 89
    [16]
    Dong C F et al 2011 Plasma Fusion Res 6 2402078
    [17]
    Zhang L et al 2015 Rev. Sci. Instrum. 86 123509
    [18]
    Zhang L et al 2019 Nucl. Instrum. Methods Phys. Res. A916 169
    [19]
    Zhang L et al 2017 Nucl. Mater. Energy 12 774
    [20]
    Wan B N et al 2015 Nucl. Fusion 55 104015
    [21]
    Kramida A et al NIST atomic spectra database 78 [2020-01-06]https://doi.org/10.18434/T4W30F
    [22]
    Yao L M et al 2019 Spectrosc. Spect. Anal. 39 2645 (in Chinese)
    [23]
    Yang X D et al 2018 Spectrosc. Spect. Anal. 38 1262 (inChinese)
    [24]
    Dong C F et al 2011 Rev. Sci. Instrum. 82 113102
    [25]
    Dong C F et al 2012 Plasma Fusion Res. 7 2402139
    [26]
    Kelly R L 1987 Atomic and Ironic Spectrum Lines below 2000 Angstroms: Hydrogen Through Krypton Part I (H—Cr)(New York: The American Chemical Society and the American Institute of Physics for the National Bureau of Standards)
  • Related Articles

    [1]Linghan WAN (万凌寒), Zhoujun YANG (杨州军), Ruobing ZHOU (周若冰), Xiaoming PAN (潘晓明), Chi ZHANG (张弛), Xianli XIE (谢先立), Bowen RUAN (阮博文). Design of Q-band FMCW reflectometry for electron density profile measurement on the Joint TEXT tokamak[J]. Plasma Science and Technology, 2017, 19(2): 25602-025602. DOI: 10.1088/2058-6272/19/2/025602
    [2]Doo-Hee CHANG, Seung Ho JEONG, Min PARK, Tae-Seong KIM, Bong-Ki JUNG, Kwang Won LEE, Sang Ryul IN. Discharge Characteristics of Large-Area High-Power RF Ion Source for Positive and Negative Neutral Beam Injectors[J]. Plasma Science and Technology, 2016, 18(12): 1220-1225. DOI: 10.1088/1009-0630/18/12/13
    [3]GAO Yu (高宇), WANG Yumin (王嵎民), ZHANG Tao (张涛), ZHANG Shoubiao (张寿彪), QU Hao (屈浩), HAN Xiang (韩翔), WEN Fei (文斐), KONG Defeng (孔德峰), HUANG Canbin (黄灿斌), CAI Jianqing (蔡剑青), SUN Youwen (孙有文), LIANG Yunfeng (梁云峰), GAO Xiang (高翔), EAST Team. Preliminary Study of the Magnetic Perturbation Effects on the Edge Density Profiles and Fluctuations Using Reflectometers on EAST[J]. Plasma Science and Technology, 2016, 18(9): 879-883. DOI: 10.1088/1009-0630/18/9/01
    [4]QU Hao (屈浩), ZHANG Tao (张涛), ZHANG Shoubiao (张寿彪), WEN Fei (文斐), WANG Yumin (王嵎民), KONG Defeng (孔德峰), HAN Xiang (韩翔), YANG Yao (杨曜), GAO Yu (高宇), HUANG Canbin (黄灿斌), CAI Jianqing (蔡剑青), GAO Xiang (高翔), the EAST team. Q-Band X-Mode Reflectometry and Density Profile Reconstruction[J]. Plasma Science and Technology, 2015, 17(12): 985-990. DOI: 10.1088/1009-0630/17/12/01
    [5]Seon-Geun OH, Young-Jun LEE, Jae-Hong JEON, Jong-Hyeon SEO, Hee-Hwan CHOE. The Spatial Effects of Antenna Configuration in a Large Area Inductively Coupled Plasma System for Flat Panel Displays[J]. Plasma Science and Technology, 2014, 16(8): 758-766. DOI: 10.1088/1009-0630/16/8/06
    [6]WEI Yu(魏钰), ZUO Xiao(左潇), CHEN Longwei(陈龙威), MENG Yuedong(孟月东), FANG Shidong(方世东), SHEN Jie(沈洁), SHU Xingsheng(舒兴胜). Linear Plasma Sources for Large Area Film Deposition: A Brief Review[J]. Plasma Science and Technology, 2014, 16(4): 356-362. DOI: 10.1088/1009-0630/16/4/10
    [7]ZHANG Shoubiao(张寿彪), GAO Xiang(高翔), LING Bili(凌必利), WANG Yumin(王嵎民), ZHANG Tao(张涛), HAN Xiang(韩翔), LIU Zixi(刘子奚), BU Jingliang(布景亮), LI Jiangang(李建刚), EAST team. Density Profile and Fluctuation Measurements by Microwave Reflectometry on EAST[J]. Plasma Science and Technology, 2014, 16(4): 311-315. DOI: 10.1088/1009-0630/16/4/02
    [8]ZHANG Chongyang (张重阳), LIU Ahdi (刘阿娣), LI Hong (李弘), LI Bin (李斌), et al.. X-Mode Frequency Modulated Density Profile Reflectometer on EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(9): 857-862. DOI: 10.1088/1009-0630/15/9/04
    [9]XIA Zhiwei (夏志伟), LI Wei (李伟), YANG Qingwei (杨青巍), LU Jie (卢杰), YI Ping (易萍), GAO Jinming (高金明). Application of DEGAS for Ion Temperature Profile Reconstruction from a NPA Diagnostic on HL-2A[J]. Plasma Science and Technology, 2013, 15(2): 101-105. DOI: 10.1088/1009-0630/15/2/04
    [10]ZHAO Zhanqiang (赵占强), DAI Zhongling (戴忠玲), WANG Younian(王友年). Feature Profile Evolution During Etching of SiO2 in Radio-Frequency or Direct-Current Plasmas[J]. Plasma Science and Technology, 2012, 14(1): 64-70. DOI: 10.1088/1009-0630/14/1/14
  • Cited by

    Periodical cited type(7)

    1. Santos, J.M., Silva, A., da Silva, F. et al. Design and performance analysis of a High Field Side antenna for Plasma Position Reflectometry control on DTT. Fusion Engineering and Design, 2024. DOI:10.1016/j.fusengdes.2024.114275
    2. Ye, K., Zhou, Z., Zhang, T. et al. Experimental study of core MHD behavior and a novel algorithm for rational surface detection based on profile reflectometry in EAST. Plasma Science and Technology, 2024, 26(3): 034010. DOI:10.1088/2058-6272/ad0f0a
    3. Ricardo, E., da Silva, F., Heuraux, S. et al. Simulation and data processing techniques to design optimized PPR systems on plasma fusion devices. Computer Physics Communications, 2024. DOI:10.1016/j.cpc.2023.108945
    4. Liu, F., Shi, G., Wang, W. et al. Effects of the ground-electrode temperature on electrical and optical characteristics of a coaxial dielectric barrier discharge in atmospheric pressure air. Physica Scripta, 2023, 98(12): 125605. DOI:10.1088/1402-4896/ad0801
    5. Da Silva, F., Ricardo, E., Ferreira, J. et al. Benchmarking 2D against 3D FDTD codes for the assessment of the measurement performance of a low field side plasma position reflectometer applicable to IDTT. Journal of Instrumentation, 2022, 17(1): C01017. DOI:10.1088/1748-0221/17/01/C01017
    6. Lips, J., Heuraux, S., Lechte, C. et al. On frequency-independent horn antenna design for plasma positioning reflectometers, from simulation to prototype testing. Journal of Instrumentation, 2021, 16(7): P07040. DOI:10.1088/1748-0221/16/07/P07040
    7. da Silva, F., Ferreira, J., Santos, J. et al. Assessment of measurement performance for a low field side IDTT plasma position reflectometry system. Fusion Engineering and Design, 2021. DOI:10.1016/j.fusengdes.2021.112405

    Other cited types(0)

Catalog

    Article views (104) PDF downloads (108) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return