Advanced Search+
Xin ZENG (曾鑫), Yafang ZHANG (章亚芳), Liangyin GUO (郭良银), Wenquan GU (古文泉), Ping YUAN (袁萍), Linsheng WEI (魏林生). Ozone generation enhanced by silica catalyst in packed-bed DBD reactor[J]. Plasma Science and Technology, 2021, 23(8): 85501-085501. DOI: 10.1088/2058-6272/ac0244
Citation: Xin ZENG (曾鑫), Yafang ZHANG (章亚芳), Liangyin GUO (郭良银), Wenquan GU (古文泉), Ping YUAN (袁萍), Linsheng WEI (魏林生). Ozone generation enhanced by silica catalyst in packed-bed DBD reactor[J]. Plasma Science and Technology, 2021, 23(8): 85501-085501. DOI: 10.1088/2058-6272/ac0244

Ozone generation enhanced by silica catalyst in packed-bed DBD reactor

Funds: This work is supported by National Natural Science Foundation of China (No. 51867018), Jiangxi Province's Major Subject Academic and Technical Leader Training Program-Leading Talent Project (No. 20204BCJ22016), and the Innovation Fund Designed for Graduate Students of Jiangxi Province, China (No. YC2020-S118).
More Information
  • Received Date: March 24, 2021
  • Revised Date: May 12, 2021
  • Accepted Date: May 16, 2021
  • In this paper, three dielectric barrier discharge (DBD) configurations, which were plain DBD with no packing, DBD with packed pure quartz fibers and DBD with packed loaded quartz fibers, were employed to investigate the effect and catalytic mechanism of catalyst materials in a packed-bed ozone generator. From the experimental results, it was clear that the DBD configuration with packed pure fibers and packed loaded fibers promotes ozone generation. For the packed-bed reactor, ozone concentration and ozone yield were enhanced by an increase of electric field in the discharge gap with the packed-bed effect. Meanwhile, the enhancement of ozone concentration and yield for the DBD reactor packed by loaded fibers with silica nanoparticles was due to the catalysis of silica nanoparticles on the fiber surface. The adsorption of silica nanoparticles on the fiber surface can prolong the retention time of active species and enhance surface reactions.
  • [1]
    Wei L S, Peng B F and Zhang Y F 2016 Vacuum 125 123
    [2]
    Wei L S, Xu M and Zhang Y F 2017 Ozone Sci. Eng. 39 33
    [3]
    Wei L S 2016 Plasma Sci. Technol. 18 147
    [4]
    Teranishi K et al 2009 Plasma Sources Sci. Technol. 18 045011
    [5]
    Pekárek S 2014 Plasma Sources Sci. Technol. 23 062001
    [6]
    Gnapowski E, Gnapowski E and Pytka J 2018 Plasma Sci.Technol. 20 085505
    [7]
    Abdelaziz A A et al 2016 Plasma Sources Sci. Technol. 25 035012
    [8]
    Wei L S et al 2018 Plasma Sci. Technol. 20 125505
    [9]
    Yuan D K et al 2016 J. Phys. D Appl. Phys. 49 455203
    [10]
    Xie S R 2019 Plasma Sci. Technol. 21 055505
    [11]
    Chang J S, Lawless P A and Yamamoto T 1991 IEEE Trans.Plasma Sci. 19 1152
    [12]
    Al-Abduly A, Christensen P and Harvey A 2020 Plasma Sources Sci. Technol. 29 035002
    [13]
    Qin Y C et al 2018 Plasma Sci. Technol. 20 095501
    [14]
    Schmidt-Szalowski K and Borucka A 1989 Plasma Chem.Plasma Process. 9 235
    [15]
    Schmidt-Szalowski K, Borucka A and Jodzis S 1990 Plasma Chem. Plasma Process. 10 443
    [16]
    Jodzis S 2003 Ozone Sci. Eng. 25 63
    [17]
    Murphy A B and Morrow R 2002 IEEE Trans. Plasma Sci. 30 180
    [18]
    Chen H L, Lee H M and Chang M B 2006 Ozone Sci. Eng. 28 111
    [19]
    Huang W D, Ren T T and Xia W D 2007 Ozone Sci. Eng. 29 107
    [20]
    Wei L S, Deng Q S and Zhang Y F 2020 Vacuum 173 109145
    [21]
    Tu X et al 2011 J. Phys. D Appl. Phys. 44 274007
    [22]
    Kim H H and Ogata A 2011 Eur. Phys. J. Appl. Phys. 55 13806
    [23]
    Sung T L et al 2013 Vacuum 90 65
    [24]
    van Laer K and Bogaerts A 2016 Plasma Sources Sci. Technol.25 015002
    [25]
    Gadkari S and Gu S 2018 Phys. Plasmas 25 063513
    [26]
    Nassour K 2016 Ozone Sci. Eng. 38 70
    [27]
    Lopaev D V, Malykhin E M and Zyryanov S M 2011 J. Phys.D Appl. Phys. 44 015201
    [28]
    Lopaev D V, Malykhin E M and Zyryanov S M 2011 J. Phys.D Appl. Phys. 44 015202
    [29]
    Durme J V et al 2008 Appl. Catal. B Environ. 78 324
    [30]
    Chen H L 2009 Environ. Sci. Technol. 43 2216
  • Related Articles

    [1]Dian ZHANG (张点), Jun ZHANG (张军), Song LI (李嵩), Jing LIU (刘静), Huihuang ZHONG (钟辉煌). Design and preliminary experiment of radial sheet beam terahertz source based on radial pseudospark discharge[J]. Plasma Science and Technology, 2019, 21(4): 44003-044003. DOI: 10.1088/2058-6272/aafbc3
    [2]Rongxiao ZHAI (翟戎骁), Tao HUANG (黄涛), Peitian CONG (丛培天), Weixi LUO (罗维熙), Zhiguo WANG (王志国), Tianyang ZHANG (张天洋), Jiahui YIN (尹佳辉). Comparative study on breakdown characteristics of trigger gap and overvoltage gap in a gas pressurized closing switch[J]. Plasma Science and Technology, 2019, 21(1): 15505-015505. DOI: 10.1088/2058-6272/aae432
    [3]Rongxiao ZHAI (翟戎骁), Mengtong QIU (邱孟通), Weixi LUO (罗维熙), Peitian CONG (丛培天), Tao HUANG (黄涛), Jiahui YIN (尹佳辉), Tianyang ZHANG (张天洋). Experimental investigation on the development characteristics of initial electrons in a gas pressurized closing switch under DC voltage[J]. Plasma Science and Technology, 2018, 20(4): 45505-045505. DOI: 10.1088/2058-6272/aaa8d8
    [4]Pengfei ZHANG (张鹏飞), Yang HU (胡杨), Jiang SUN (孙江), Yan SONG (宋岩), Jianfeng SUN (孙剑锋), Zhiming YAO (姚志明), Peitian CONG (丛培天), Mengtong QIU (邱孟通), Aici QIU (邱爱慈). Design and experimental research on a selfmagnetic pinch diode under MV[J]. Plasma Science and Technology, 2018, 20(1): 14014-014014. DOI: 10.1088/2058-6272/aa8592
    [5]Yuantao ZHANG (张远涛), Yu LIU (刘雨), Bing LIU (刘冰). On peak current in atmospheric pulse-modulated microwave discharges by the PIC-MCC model[J]. Plasma Science and Technology, 2017, 19(8): 85402-085402. DOI: 10.1088/2058-6272/aa6a51
    [6]JU Xingbao (琚兴宝), SUN Haishun (孙海顺), YANG Zhuo (杨倬), ZHANG Junmin (张俊民). Investigation on the Arc Ignition Characteristics and Energy Absorption of Liquid Metal Current Limiter Based on Self-Pinch Effect[J]. Plasma Science and Technology, 2016, 18(5): 531-537. DOI: 10.1088/1009-0630/18/5/15
    [7]HU Yixiang(呼义翔), ZENG Jiangtao(曾江涛), SUN Fengju(孙凤举), WEI Hao(魏浩), YIN Jiahui(尹佳辉), CONG Peitian(丛培天), QIU Aici(邱爱慈). Modeling Methods for the Main Switch of High Pulsed-Power Facilities Based on Transmission Line Code[J]. Plasma Science and Technology, 2014, 16(9): 873-876. DOI: 10.1088/1009-0630/16/9/12
    [8]DING Siye(丁斯晔), WAN Baonian(万宝年), WANG Lu(王璐), TI Ang(提昂), ZHANG Xinjun(张新军), LIU Zixi(刘子奚), QIAN Jinping(钱金平), ZHONG Guoqiang(钟国强), DUAN Yanmin(段艳敏). Observation of Electron Energy Pinch in HT-7 ICRF Heated Plasmas[J]. Plasma Science and Technology, 2014, 16(9): 826-832. DOI: 10.1088/1009-0630/16/9/04
    [9]YAO Xueling(姚学玲), CHEN Jingliang(陈景亮), HU Shangmao(胡上茂). Emission Current Characteristics of Triggered Device of Vacuum Switch[J]. Plasma Science and Technology, 2014, 16(4): 380-384. DOI: 10.1088/1009-0630/16/4/14
    [10]SUN Jiang (孙江), SUN Jianfeng (孙剑锋), YANG Hailiang (杨海亮), ZHANG Pengfei (张鹏飞), et al.. Plasma Density Influence on the Properties of a Plasma Filled Rod Pinch Diode[J]. Plasma Science and Technology, 2013, 15(9): 904-907. DOI: 10.1088/1009-0630/15/9/14
  • Cited by

    Periodical cited type(13)

    1. Li, J., Xu, Z., Xia, Y. et al. Strategy for preparing nanocrystalline Ta-N gradient layer with enhanced mechanical and tribological performance via microwave plasma nitriding. Ceramics International, 2024, 50(21): 41636-41647. DOI:10.1016/j.ceramint.2024.08.013
    2. Gao, X., Liu, J., Bo, L. et al. Achieving superb mechanical properties in CoCrFeNi high-entropy alloy microfibers via electric current treatment. Acta Materialia, 2024. DOI:10.1016/j.actamat.2024.120203
    3. Li, B., Zhang, X., Tang, S. et al. Influence of spraying power on microstructure, phase composition and nanomechanical properties of plasma-sprayed nanostructured Yb-silicate environmental barrier coatings. Surface and Coatings Technology, 2024. DOI:10.1016/j.surfcoat.2024.130450
    4. Wang, Z., Niu, S., Lou, M. et al. The Joint Formation Mechanism, Microstructure, and Mechanical Performance of Resistance Rivet-Welded Mg/Steel Joints. Journal of Materials Engineering and Performance, 2024. DOI:10.1007/s11665-024-10611-6
    5. Niu, J., Miao, B., Guo, J. et al. Leveraging Deep Neural Networks for Estimating Vickers Hardness from Nanoindentation Hardness. Materials, 2024, 17(1): 148. DOI:10.3390/ma17010148
    6. Dong, Z., Pan, R., Zhou, T. et al. Microstructure and mechanical property of Ti/Cu ultra-thin foil lapped joints with different weld depths by nanosecond laser welding. Journal of Manufacturing Processes, 2023. DOI:10.1016/j.jmapro.2023.10.082
    7. Sun, H., Yi, G., Wan, S. et al. Effects of Ni-5 wt% Al/Bi2O3 addition and heat treatment on mechanical and tribological properties of atmospheric plasma sprayed Al2O3 coating. Surface and Coatings Technology, 2023. DOI:10.1016/j.surfcoat.2023.129935
    8. Mishchenko, Y., Patnaik, S., Wallenius, J. et al. Thermophysical properties and oxidation behaviour of the U0.8Zr0.2N solid solution. Nuclear Materials and Energy, 2023. DOI:10.1016/j.nme.2023.101459
    9. Zakaryan, M.K., Malakpour Estalaki, S., Kharatyan, S. et al. Spontaneous Crystallization for Tailoring Polymorphic Nanoscale Nickel with Superior Hardness. Journal of Physical Chemistry C, 2022, 126(29): 12301-12312. DOI:10.1021/acs.jpcc.2c03612
    10. Stekovic, S., Romero-Ramirez, R., Selegård, L. Effect of Nitriding on Microstructure and Mechanical Properties on a Ti64 Alloy for Aerospace Applications. 2022.
    11. Kumar, R.R., Gupta, R.K., Sarkar, A. et al. Vacuum diffusion bonding of α‑titanium alloy to stainless steel for aerospace applications: Interfacial microstructure and mechanical characteristics. Materials Characterization, 2022. DOI:10.1016/j.matchar.2021.111607
    12. Sun, H., Yi, G., Wan, S. et al. Effect of Cr2O3 addition on mechanical and tribological properties of atmospheric plasma-sprayed NiAl-Bi2O3 composite coatings. Surface and Coatings Technology, 2021. DOI:10.1016/j.surfcoat.2021.127818
    13. Raj, M., Prasad, M.J.N.V., Narasimhan, K. Microstructure and Mechanical Properties of Ti-6Al-4V Alloy/Interstitial Free Steel Joint Diffusion Bonded with Application of Copper and Nickel Interlayers. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51(12): 6234-6247. DOI:10.1007/s11661-020-06002-w

    Other cited types(0)

Catalog

    Article views (107) PDF downloads (80) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return