Processing math: 100%
Advanced Search+
Hao WANG (王灏), Yunfeng LIANG (梁云峰), Shuai XU (徐帅), Zhonghe JIANG (江中和), Yuhe FENG (冯玉和), A KNIEPS, P DREWS, Jie YANG (阳杰), Xin XU (徐鑫), Ting LONG (龙婷). Influence of the X-point location on edge plasma transport in the J-TEXT tokamak with a high-field-side single-null divertor[J]. Plasma Science and Technology, 2021, 23(12): 125103. DOI: 10.1088/2058-6272/ac224a
Citation: Hao WANG (王灏), Yunfeng LIANG (梁云峰), Shuai XU (徐帅), Zhonghe JIANG (江中和), Yuhe FENG (冯玉和), A KNIEPS, P DREWS, Jie YANG (阳杰), Xin XU (徐鑫), Ting LONG (龙婷). Influence of the X-point location on edge plasma transport in the J-TEXT tokamak with a high-field-side single-null divertor[J]. Plasma Science and Technology, 2021, 23(12): 125103. DOI: 10.1088/2058-6272/ac224a

Influence of the X-point location on edge plasma transport in the J-TEXT tokamak with a high-field-side single-null divertor

Funds: his work is supported by the National Magnetic Confinement Fusion Energy R&D Program of China (Nos. 2018YFE0301104 and 2018YFE0309100), and National Natural Science Foundation of China (No. 51821005).
More Information
  • Received Date: June 08, 2021
  • Revised Date: August 28, 2021
  • Accepted Date: August 29, 2021
  • High-density experiments in the high-field-side mid-plane single-null divertor configuration have been performed for the first time on J-TEXT. The experiments show an increase in the highest central channel line-averaged density from 2.73×1019m3 to 6.49×1019m3, while the X-point moves away from the target by increasing the divertor coil current. The corresponding Greenwald fraction rises from 0.50 to 0.79. For the impurity transport, the density normalized radiation intensity (absolute extreme ultraviolet and soft x-ray) of the central channel density decreased significantly (>50%) with an increase in the plasma density. To better understand the underlying physics mechanisms, the 3D edge Monte Carlo code coupled with EIRENE (EMC3- EIRENE) has been implemented for the first time on J-TEXT. The simulation results show good agreement with the experimental findings. As the X-point moves away from the target, the divertor power decay length drops and the scrape-off layer impurity screening effect is enhanced.
  • [1]
    Pitcher C S and Stangeby P C 1997 Plasma Phys. Control.Fusion 39 779
    [2]
    Guo H Y et al 2019 Nucl. Fusion 59 086054
    [3]
    Ryutov D D and Soukhanovskii V A 2015 Phys. Plasmas 22 110901
    [4]
    Ohyabu N et al 1994 Nucl. Fusion 34 387
    [5]
    Strumberger E 1996 Nucl. Fusion 36 891
    [6]
    Kukushkin A S et al 2011 Fusion Eng. Des. 86 2865
    [7]
    Stangeby P C 2000 The Plasma Boundary of Magnetic Fusion Devices (Boca Raton, FL: CRC Press)
    [8]
    Lackner K and Keilhacker M 1984 J. Nucl. Mater.128–129 368
    [9]
    Wischmeier M et al 2009 J. Nucl. Mater. 390–391 250
    [10]
    Matthews G F 1995 J. Nucl. Mater. 220–222 104
    [11]
    Zhang M et al 2015 J. Fusion Energy 34 509
    [12]
    Liang Y et al 2019 Nucl. Fusion 59 112016
    [13]
    Chen Z P 2021 Realization of divertor configuration discharge in J-TEXT tokamak Proceedings of the 28th IAEA Fusion Energy Conference (Vienna) (IAEA)
    [14]
    Feng Y et al 1997 J. Nucl. Mater. 241–243 930
    [15]
    Feng Y et al 2004 Contrib. Plasma Phys. 44 57
    [16]
    Feng Y et al 2013 Comput. Phys. Commun. 184 1555
    [17]
    Kobayashi M et al 2014 Contrib. Plasma Phys. 54 383
    [18]
    Feng Y et al 2014 Contrib. Plasma Phys. 54 426
    [19]
    Schneider R et al 1992 J. Nucl. Mater. 196 810
    [20]
    Reiter D, Baelmans M and Börner P 2005 Fusion Sci. Technol.47 172
    [21]
    Zhang X L et al 2014 Rev. Sci. Instrum. 85 11E420
    [22]
    Li J C et al 2014 Rev. Sci. Instrum. 85 11E414
    [23]
    Chen J et al 2012 Rev. Sci. Instrum. 83 10E306
    [24]
    Long T et al 2020 Rev. Sci. Instrum. 91 083504
    [25]
    Lao L L et al 1985 Nucl. Fusion 25 1611
    [26]
    Greenwald M et al 1988 Nucl. Fusion 28 2199
    [27]
    Effenberg F et al 2017 Nucl. Fusion 57 036021
    [28]
    Kawamura G et al 2014 Contrib. Plasma Phys. 54 437
    [29]
    Kawamura G et al 2018 Plasma Phys. Control. Fusion 60 084005
    [30]
    Dai S Y et al 2018 Nucl. Fusion 58 096024
    [31]
    Oishi T et al 2018 Nucl. Fusion 58 016040
    [32]
    Dai S Y et al 2016 Nucl. Fusion 56 066005
    [33]
    Kobayash M et al 2004 Contrib. Plasma Phys. 44 25
    [34]
    Frerichs H et al 2010 Nucl. Fusion 50 034004
    [35]
    Lunt T et al 2012 Nucl. Fusion 52 054013
    [36]
    Harting D et al 2011 J. Nucl. Mater. 415 S540
    [37]
    Lunt T et al 2014 Plasma Phys. Control. Fusion 56 035009
    [38]
    Huang J et al 2014 Plasma Phys. Control. Fusion 56 075023
    [39]
    Dai S Y et al 2021 Plasma Phys. Control. Fusion 63 025003
    [40]
    Dai S Y et al 2020 J. Plasma Phys. 86 815860303
    [41]
    Liu B et al 2020 Plasma Phys. Control. Fusion 62 035003
    [42]
    Xie T et al 2018 Nucl. Fusion 58 106017
    [43]
    Xu S et al 2018 Nucl. Fusion 58 106008
    [44]
    Xu S et al 2020 Nucl. Fusion 60 056006
    [45]
    https://adas.ac.uk/
    [46]
    Liang Z et al 2021 Phys. Scr. 96 065601
    [47]
    Feng Y et al 2009 Nucl. Fusion 49 095002
    [48]
    Zhao Q et al 2021 IEEE 4th International Electrical and Energy Conference (https://doi.org/10.1109/CIEEC50170.2021.9510443)
  • Related Articles

    [1]Zhian HAO, Jianfei LI, Bin XU, Jingfeng YAO, Chengxun YUAN, Ying WANG, Zhongxiang ZHOU, Xiaoou WANG. Composite wave-absorbing structure combining thin plasma and metasurface[J]. Plasma Science and Technology, 2023, 25(4): 045504. DOI: 10.1088/2058-6272/aca13e
    [2]Zhongkai ZHANG (张仲恺), Guanrong HANG (杭观荣), Jiayun QI (齐佳运), Zun ZHANG (张尊), Zhe ZHANG (章喆), Jiubin LIU (刘久镔), Wenjiang YANG (杨文将), Haibin TANG (汤海滨). Design and fabrication of a full elastic sub-micron-Newton scale thrust measurement system for plasma micro thrusters[J]. Plasma Science and Technology, 2021, 23(10): 104004. DOI: 10.1088/2058-6272/ac1ac3
    [3]Xiaoxing ZHANG (张晓星), Yuan TIAN (田远), Zhaolun CUI (崔兆仑), Ju TANG (唐炬). Plasma-assisted abatement of SF6 in a packed bed plasma reactor: understanding the effect of gas composition[J]. Plasma Science and Technology, 2020, 22(5): 55502-055502. DOI: 10.1088/2058-6272/ab65b2
    [4]Chijie ZHUANG (庄池杰), Zezhong WANG (王泽众), Rong ZENG (曾嵘), Lei LIU (刘磊), Te LI (李特), Min LI (李敏), Yingzhe CUI (崔英哲), Jinliang HE (何金良). Discharge characteristics of different lightning air terminals under composite voltages[J]. Plasma Science and Technology, 2019, 21(5): 51001-051001. DOI: 10.1088/2058-6272/aafdfa
    [5]Falun SONG (宋法伦), Fei LI (李飞), Mingdong ZHU (朱明冬), Langping WANG (王浪平), Beizhen ZHANG (张北镇), Haitao GONG (龚海涛), Yanqing GAN (甘延青), Xiao JIN (金晓). Development and experimental study of large size composite plasma immersion ion implantation device[J]. Plasma Science and Technology, 2018, 20(1): 14013-014013. DOI: 10.1088/2058-6272/aa88b0
    [6]Tianwei LAI (赖天伟), Bao FU (付豹), Shuangtao CHEN (陈双涛), Qiyong ZHANG (张启勇), Yu HOU (侯予). Numerical analysis of the static performance of an annular aerostatic gas thrust bearing applied in the cryogenic turbo-expander of the EAST subsystem[J]. Plasma Science and Technology, 2017, 19(2): 25604-025604. DOI: 10.1088/2058-6272/19/2/025604
    [7]YAN Shaojian(闫少健), TIAN Canxin(田灿鑫), HUANG Zhihong(黄志宏), YANG Bing(杨兵), FU Dejun(付德君). Structure and Mechanical Properties of CrTiAlN/TiAlN Composite Coatings Deposited by Multi-Arc Ion Plating[J]. Plasma Science and Technology, 2014, 16(10): 969-973. DOI: 10.1088/1009-0630/16/10/12
    [8]HAN Xiang (韩翔), LING Bili (凌必利), GAO Xiang (高翔), LIU Yong (刘永), TI Ang (提昂), LI Erzhong (李二众), XU Liqing (徐立清), WANG Yumin (王嵎民). Measurement of Magnetic Island Width by Multi-Channel ECE Radiometer on HT-7 Tokamak[J]. Plasma Science and Technology, 2013, 15(3): 217-220. DOI: 10.1088/1009-0630/15/3/05
    [9]WANG Xuemin, ZHUANG Ming, ZHANG Qiyong, LI Shanshan, FU Bao. Dynamic Stability Study of Static Gas Bearing for Small Cryogenic Turbo-Expander[J]. Plasma Science and Technology, 2011, 13(4): 506-512.
    [10]A. RAHMATI, H. BIDADI, K. AHMADI, F. HADIAN. Reactive DC Magnetron Sputter Deposited Titanium-Copper-Nitrogen Nano-Composite Thin Films with an Argon/Nitrogen Gas Mixture[J]. Plasma Science and Technology, 2010, 12(6): 681-687.
  • Cited by

    Periodical cited type(3)

    1. Jdaini, O., Missaoui, A., El Bojaddaini, M. et al. Comparative Analysis of Plasma Sheath Characteristics in One-Dimensional and Three-Dimensional Velocity Spaces Governing Nonextensive Electron Density. Contributions to Plasma Physics, 2025. DOI:10.1002/ctpp.202400094
    2. Eljabiri, Z., El Ghani, O., Driouch, I. et al. Total secondary emission effect on the complex plasma sheath with superextensive electrons. Journal of Plasma Physics, 2024, 90(5): 905900506. DOI:10.1017/S0022377824001193
    3. El Bojaddaini, M., El Kaouini, M., Chatei, H. Sheath structure behavior in collisional non-extensive plasma with negative ions. European Physical Journal Plus, 2024, 139(5): 373. DOI:10.1140/epjp/s13360-024-05112-3
    1. Jdaini, O., Missaoui, A., El Bojaddaini, M. et al. Comparative Analysis of Plasma Sheath Characteristics in One-Dimensional and Three-Dimensional Velocity Spaces Governing Nonextensive Electron Density. Contributions to Plasma Physics, 2025. DOI:10.1002/ctpp.202400094
    2. Eljabiri, Z., El Ghani, O., Driouch, I. et al. Total secondary emission effect on the complex plasma sheath with superextensive electrons. Journal of Plasma Physics, 2024, 90(5): 905900506. DOI:10.1017/S0022377824001193
    3. El Bojaddaini, M., El Kaouini, M., Chatei, H. Sheath structure behavior in collisional non-extensive plasma with negative ions. European Physical Journal Plus, 2024, 139(5): 373. DOI:10.1140/epjp/s13360-024-05112-3

    Other cited types(0)

Catalog

    Article views (198) PDF downloads (299) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return