Advanced Search+
Mingxiang LU, Le HAN, Qi ZHAO, Juncheng QIU, Jianhong ZHOU, Dinghua HU, Nanyu MOU, Xuemei CHEN. Microchannel cooling technique for dissipating high heat flux on W/Cu flat-type mock-up for EAST divertor[J]. Plasma Science and Technology, 2022, 24(9): 095602. DOI: 10.1088/2058-6272/ac684c
Citation: Mingxiang LU, Le HAN, Qi ZHAO, Juncheng QIU, Jianhong ZHOU, Dinghua HU, Nanyu MOU, Xuemei CHEN. Microchannel cooling technique for dissipating high heat flux on W/Cu flat-type mock-up for EAST divertor[J]. Plasma Science and Technology, 2022, 24(9): 095602. DOI: 10.1088/2058-6272/ac684c

Microchannel cooling technique for dissipating high heat flux on W/Cu flat-type mock-up for EAST divertor

More Information
  • Corresponding author:

    Xuemei CHEN, E-mail: xuemeichen@njust.edu.cn

  • 3 Mingxiang Lu and Le Han contributed equally to the article

  • Received Date: December 14, 2021
  • Revised Date: April 17, 2022
  • Accepted Date: April 18, 2022
  • Available Online: December 07, 2023
  • Published Date: July 12, 2022
  • As an important component of tokamaks, the divertor is mainly responsible for extracting heat and helium ash, and the targets of the divertor need to withstand high heat flux of 10 MW m-2 for steady-state operation. In this study, we proposed a new strategy, using microchannel cooling technology to remove high heat load on the targets of the divertor. The results demonstrated that the microchannel-based W/Cu flat-type mock-up successfully withstood the thermal fatigue test of 1000 cycles at 10 MW m-2 with cooling water of 26 l min-1, 30 ℃ (inlet), 0.8 MPa (inlet), 15 s power on and 15 s dwell time; the maximum temperature on the heat-loaded surface (W surface) of the mock-up was 493 ℃, which is much lower than the recrystallization temperature of W (1200 ℃). Moreover, no occurrence of macrocrack and 'hot spot' at the W surface, as well as no detachment of W/Cu tiles were observed during the thermal fatigue testing. These results indicate that microchannel cooling technology is an efficient method for removing the heat load of the divertor at a low flow rate. The present study offers a promising solution to replace the monoblock design for the EAST divertor.

  • The authors acknowledge financial support from the National MCF Energy R & D Program (No. 2018YFE0312300), National Natural Science Foundation of China (No. 51706100), the Natural Science Foundation of Jiangsu Province (No. BK20180477) and Fundamental Research Funds for the Central Universities (No. 30918011205).

  • [1]
    Pitts RA et al 2019 Nucl. Mater. Energy 20 100696 doi: 10.1016/j.nme.2019.100696
    [2]
    Tian K et al 2021 Fusion Eng. Des. 165 112254 doi: 10.1016/j.fusengdes.2021.112254
    [3]
    Cao L, Yao D M and Li J G 2016 J. Fusion Energy 35 556 doi: 10.1007/s10894-016-0074-1
    [4]
    Wang L et al 2014 Nucl. Fusion 54 114002 doi: 10.1088/0029-5515/54/11/114002
    [5]
    Deng G Z et al 2018 Plasma Phys. Control. Fusion 60 045001 doi: 10.1088/1361-6587/aaa8c5
    [6]
    Mazul I V et al 2011 Fusion Eng. Des. 86 576 doi: 10.1016/j.fusengdes.2011.02.022
    [7]
    Li Q et al 2017 Phys. Scr. 2017 014020 doi: 10.1088/1402-4896/aa8921
    [8]
    Schlosser J et al 2004 Phys. Scr. 2004 199 doi: 10.1238/Physica.Topical.111a00199
    [9]
    Zhao S X et al 2017 Fusion Sci. Technol. 67 784 doi: 10.13182/FST14-835
    [10]
    Lian Y Y et al 2016 Plasma Sci. Technol. 18 184 doi: 10.1088/1009-0630/18/2/15
    [11]
    Lim J H et al 2020 Fusion Eng. Des. 161 112072 doi: 10.1016/j.fusengdes.2020.112072
    [12]
    Oh H et al 2021 Fusion Eng. Des. 162 112101 doi: 10.1016/j.fusengdes.2020.112101
    [13]
    Muvvala V N et al 2020 Fusion Eng. Des. 155 111543 doi: 10.1016/j.fusengdes.2020.111543
    [14]
    Mou N Y et al 2021 Fusion Eng. Des. 169 112670 doi: 10.1016/j.fusengdes.2021.112670
    [15]
    Wang Y P and Dedov A V 2020 J. Phys. Conf. Ser. 1683 022100 doi: 10.1088/1742-6596/1683/2/022100
    [16]
    Tuckerman D B and Pease R F W 1981 IEEE Electron Device Lett. 2 126 doi: 10.1109/EDL.1981.25367
    [17]
    Fu B R, Lee C Y and Pan C N 2013 Int. J. Heat Mass Transfer 58 53 doi: 10.1016/j.ijheatmasstransfer.2012.11.050
    [18]
    Yang F H et al 2014 Int. J. Heat Mass Transfer 68 716 doi: 10.1016/j.ijheatmasstransfer.2013.09.060
    [19]
    Yin L F et al 2019 Int. J. Heat Mass Transfer 137 204 doi: 10.1016/j.ijheatmasstransfer.2019.03.108
    [20]
    Li Q et al 2013 Fusion Eng. Des. 88 1808 doi: 10.1016/j.fusengdes.2013.03.076
    [21]
    Moffat R J 1988 Exp. Therm. Fluid Sci. 1 3 doi: 10.1016/0894-1777(88)90043-X
    [22]
    Li L et al 2021 Plasma Sci. Technol. 23 095601 doi: 10.1088/2058-6272/ac0689
    [23]
    Pan Z W et al 2020 Opt. Lasers Eng. 127 105942 doi: 10.1016/j.optlaseng.2019.105942
  • Related Articles

    [1]Bo SHI (史博), Jinhong YANG (杨锦宏), Cheng YANG (杨程), Desheng CHENG (程德胜), Hui WANG (王辉), Hui ZHANG (张辉), Haifei DENG (邓海飞), Junli QI (祁俊力), Xianzu GONG (龚先祖), Weihua WANG (汪卫华). Double-null divertor configuration discharge and disruptive heat flux simulation using TSC on EAST[J]. Plasma Science and Technology, 2018, 20(7): 74006-074006. DOI: 10.1088/2058-6272/aab48e
    [2]Jianhua WANG (王健华), Gen CHEN (陈根), Yanping ZHAO (赵燕平), Yuzhou MAO (毛玉周), Shuai YUAN (袁帅), Xinjun ZHANG (张新军), Hua YANG (杨桦), Chengming QIN (秦成明), Yan CHENG (程艳), Yuqing YANG (杨宇晴), Guillaume URBANCZYK, Lunan LIU (刘鲁南), Jian CHENG (程健). Design and test of voltage and current probes for EAST ICRF antenna impedance measurement[J]. Plasma Science and Technology, 2018, 20(4): 45603-045603. DOI: 10.1088/2058-6272/aaa7ea
    [3]Pengfei ZHANG (张鹏飞), Ling ZHANG (张凌), Zhenwei WU (吴振伟), Zong XU (许棕), Wei GAO (高伟), Liang WANG (王亮), Qingquan YANG (杨清泉), Jichan XU (许吉禅), Jianbin LIU (刘建斌), Hao QU (屈浩), Yong LIU (刘永), Juan HUANG (黄娟), Chengrui WU (吴成瑞), Yumei HOU (侯玉梅), Zhao JIN (金钊), J D ELDER, Houyang GUO (郭后扬). OEDGE modeling of plasma contamination efficiency of Ar puffing from different divertor locations in EAST[J]. Plasma Science and Technology, 2018, 20(4): 45104-045104. DOI: 10.1088/2058-6272/aaa7e8
    [4]CHEN Gen (陈根), QIN Chengming (秦成明), MAO Yuzhou (毛玉周), ZHAO Yanping (赵燕平), YUAN Shuai (袁帅), ZHANG Xinjun (张新军). Power Compensation for ICRF Heating in EAST[J]. Plasma Science and Technology, 2016, 18(8): 870-874. DOI: 10.1088/1009-0630/18/8/14
    [5]LIAN Youyun (练友运), LIU Xiang (刘翔), FENG Fan (封范), CHEN Lei (陈蕾), CHENG Zhengkui (程正奎), WANG Jin (王金), CHEN Jiming (谌继明). Manufacturing and High Heat Flux Testing of Brazed Flat-Type W/CuCrZr Plasma Facing Components[J]. Plasma Science and Technology, 2016, 18(2): 184-189. DOI: 10.1088/1009-0630/18/2/15
    [6]CHEN Lei(陈蕾), LIAN Youyun(练友运), LIU Xiang(刘翔). Behavior of Brazed W/Cu Mockup Under High Heat Flux Loads[J]. Plasma Science and Technology, 2014, 16(3): 278-282. DOI: 10.1088/1009-0630/16/3/19
    [7]GAO Yu(高宇), GAN Kaifu(甘开福), GONG Xianzu(龚先祖), GAO Xiang(高翔), LIANG Yunfeng(梁云峰), EAST Team. Study of Striated Heat Flux on EAST Divertor Plates Induced by LHW Using Infrared Camera[J]. Plasma Science and Technology, 2014, 16(2): 93-98. DOI: 10.1088/1009-0630/16/2/02
    [8]GAO Jinming (高金明), LI Wei (李伟), XIA Zhiwei (夏志伟), PAN Yudong (潘宇东), et al.. Analysis of Divertor Heat Flux with Infrared Thermography During Gas Fuelling in the HL-2A Tokamak[J]. Plasma Science and Technology, 2013, 15(11): 1103-1107. DOI: 10.1088/1009-0630/15/11/05
    [9]WANG Fumin (王福敏), GAN Kaifu (甘开福), GONG Xianzu (龚先祖), EAST team. Temperature Distribution and Heat Flux on the EAST Divertor Targets in H-Mode[J]. Plasma Science and Technology, 2013, 15(3): 225-229. DOI: 10.1088/1009-0630/15/3/07
    [10]LU Bo (吕波), SHI Yuejiang (石跃江), WANG Fudi (王福地), WAN Baonian (万宝年), Manfred BITTER, Kenneth W. HILL, Sang-gon LEE, LI Yingying (李颖颖), FU Jia (符佳), ZHANG Jizong (张继宗), XU Jingcui (徐经翠), SHEN Yongcai. Test of a High Throughput Detector on the X-ray Crystal Spectrometer of the EAST[J]. Plasma Science and Technology, 2013, 15(2): 97-100. DOI: 10.1088/1009-0630/15/2/03
  • Cited by

    Periodical cited type(5)

    1. Singh, R.P., Kar, R., Singh, H. et al. Increasing life & efficiency of a 100 kW hollow cathode air plasma device with helical water channel design: Operational insights through optical emission spectroscopy. Vacuum, 2025. DOI:10.1016/j.vacuum.2025.114065
    2. Zhou, J., Lu, M., Han, L. et al. Topological manifold microchannel cooling for thermal management of divertor in fusion reactor. Energy, 2025. DOI:10.1016/j.energy.2024.134145
    3. Lu, M., Han, L., Zhou, J. et al. Thermohydraulic and thermal fatigue characteristics of W/Cu flat-type microchannel mock-up for CFETR divertor. Applied Thermal Engineering, 2024. DOI:10.1016/j.applthermaleng.2023.122079
    4. Xu, D., Cheng, J., Chen, P. et al. Recent progress in research on bonding technologies of W/Cu monoblocks as the divertor for nuclear fusion reactors. Nuclear Materials and Energy, 2023. DOI:10.1016/j.nme.2023.101482
    5. Liu, C., Zhou, J., Cheng, K. et al. Flow thermohydraulic characterization of open diverging microchannel heat sink for high heat flux dissipation. Applied Thermal Engineering, 2023. DOI:10.1016/j.applthermaleng.2023.120396

    Other cited types(0)

Catalog

    Figures(11)  /  Tables(2)

    Article views (148) PDF downloads (71) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return