Citation: | Ting WU, Lin NIE, Yi YU, Jinming GAO, Junyan LI, Huicong MA, Jie WEN, Rui KE, Na WU, Zhihui HUANG, Liang LIU, Dianlin ZHENG, Kaiyang YI, Xiaoyan GAO, Weice WANG, Jun CHENG, Longwen YAN, Laizhong CAI, Zhanhui WANG, Min XU. Evolution of edge turbulent transport induced by L-mode detachment in the HL-2A tokamak[J]. Plasma Science and Technology, 2023, 25(1): 015102. DOI: 10.1088/2058-6272/ac82df |
This paper presents the characteristics of L-mode detachment, together with the behavior of edge turbulent transport and plasma confinement on the HL-2A tokamak. Partially detached and pronounced detached states have been achieved in L-mode plasma. Stored energy was maintained before and after detachment. Edge turbulence and its transport have increased obviously in the partially detached state. In the pronounced detached state, redistribution of the density and temperature profiles due to detachment leads to low amplitude of electron temperature and pressure, as well as very weak edge turbulence and transport. Despite strong plasma radiation in the pronounced detached state, reduced edge turbulent transport contributes to maintaining stored energy in detached L-mode plasma in HL-2A. Different detachment states play an important role in the redistribution of density and temperature profiles, which requires further study.
This work is supported by National Key Research and Development Program of China (Nos. 2018YFE0303102, 2018YFE0309103, 2017YFE0300405 and 2017YFE0301203), National Natural Science Foundation of China (Nos. U1867222, 11875124, 11905051, 11805055 and 11875020) and the Sichuan Youth Science and Technology Innovation Team Project (No. 2020JDTD0030).
[1] |
ITER Physics Basis Editors 1999 Nucl. Fusion 39 2137 doi: 10.1088/0029-5515/39/12/301
|
[2] |
Stangeby P C 2000 The Plasma Boundary of Magnetic Fusion Devices (Philadelphia: Institute of Physics Publishing)
|
[3] |
Giroud C et al 2012 Nucl. Fusion 52 063022 doi: 10.1088/0029-5515/52/6/063022
|
[4] |
Kallenbach A et al 2015 Nucl. Fusion 55 053026 doi: 10.1088/0029-5515/55/5/053026
|
[5] |
Maddison G P et al 2014 Nucl. Fusion 54 073016 doi: 10.1088/0029-5515/54/7/073016
|
[6] |
Liu J B et al 2019 Nucl. Fusion 59 126046 doi: 10.1088/1741-4326/ab4639
|
[7] |
Wang H Q et al 2018 Nucl. Fusion 58 096014 doi: 10.1088/1741-4326/aacbde
|
[8] |
Wang L et al 2021 Nat. Commun. 12 1365 doi: 10.1038/s41467-021-21645-y
|
[9] |
Moser A L et al 2020 Phys. Plasmas 27 032506 doi: 10.1063/1.5109027
|
[10] |
Gao J M et al 2021 Nucl. Fusion 61 066024 doi: 10.1088/1741-4326/abf440
|
[11] |
Fable E et al 2022 Nucl. Fusion 62 024001 doi: 10.1088/1741-4326/ac3e81
|
[12] |
Nikolaeva V et al 2018 Plasma Phys. Control. Fusion 60 055009 doi: 10.1088/1361-6587/aab4c5
|
[13] |
Xu M et al 2019 Nucl. Fusion 59 112017 doi: 10.1088/1741-4326/ab1d84
|
[14] |
Liu L et al 2019 Fusion Eng. Des. 143 41 doi: 10.1016/j.fusengdes.2019.03.095
|
[15] |
Zheng D L et al 2018 Plasma Sci. Technol. 20 105103 doi: 10.1088/2058-6272/aacf3d
|
[16] |
Huang Z H et al 2022 Plasma Sci. Technol. 24 054002 doi: 10.1088/2058-6272/ac496c
|
[17] |
Yan L W et al 2005 Rev. Sci. Instrum. 76 093506 doi: 10.1063/1.2052049
|
[18] |
Wen J et al 2021 Rev. Sci. Instrum. 92 063513 doi: 10.1063/5.0043676
|
[19] |
Potzel S et al 2014 Nucl. Fusion 54 013001 doi: 10.1088/0029-5515/54/1/013001
|
[20] |
Guimarais L et al 2018 Nucl. Fusion 58 026005 doi: 10.1088/1741-4326/aa98e8
|
[21] |
Melnikov A V et al 2013 Nucl. Fusion 53 092002 doi: 10.1088/0029-5515/53/9/092002
|
[22] |
Melnikov A V 2019 Electric Potential in Toroidal Plasmas (Berlin: Springer)
|
[1] | Zhongbing SHI (石中兵), Wulyu ZHONG (钟武律), Min JIANG (蒋敏). Progress of microwave diagnostics development on the HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(9): 94007-094007. DOI: 10.1088/2058-6272/aad27b |
[2] | Tongyu WU (吴彤宇), Wei ZHANG (张伟), Haoxi WANG (王浩西), Yan ZHOU (周艳), Zejie YIN (阴泽杰). Research on the phase adjustment method for dispersion interferometer on HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65601-065601. DOI: 10.1088/2058-6272/aaaa19 |
[3] | Wulyu ZHONG (钟武律), Xiaolan ZOU (邹晓岚), Zhongbing SHI (石中兵), Xuru DUAN (段旭如), Min XU (许敏), Zengchen YANG (杨曾辰), Peiwan SHI (施培万), Min JIANG (蒋敏), Guoliang XIAO (肖国梁), Xianming SONG (宋显明), Jiaqi DONG (董家齐), Xuantong DING (丁玄同), Yong LIU (刘永), HL-A team (HL-A团队). Dynamics of oscillatory plasma flows prior to the H-mode in the HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(7): 70501-070501. DOI: 10.1088/2058-6272/aa6538 |
[4] | JIANG Chunyu (蒋春雨), CAO Jing (曹靖), JIANG Xiaofei (蒋小菲), ZHAO Yanfeng (赵艳凤), SONG Xianying (宋先瑛), YIN Zejie (阴泽杰). Real-Time Bonner Sphere Spectrometry on the HL-2A Tokamak[J]. Plasma Science and Technology, 2016, 18(6): 699-702. DOI: 10.1088/1009-0630/18/6/19 |
[5] | GAO Jinming (高金明), LI Wei (李伟), LU Jie (卢杰), XIA Zhiwei (夏志伟), YI Ping (易萍), LIU Yi (刘仪), YANG Qingwei (杨青巍), HL-A Team. Infrared Imaging Bolometer for the HL-2A Tokamak[J]. Plasma Science and Technology, 2016, 18(6): 590-594. DOI: 10.1088/1009-0630/18/6/02 |
[6] | XIA Donghui(夏冬辉), ZHOU Jun(周俊), RAO Jun(饶军), HUANG Mei(黄梅), LU Zhihong(陆志鸿), WANG He(王贺), CHEN Gangyu(陈罡宇), WANG Chao(王超), LU Bo(卢波), ZHUANG Ge(庄革). Design of the Transmission Lines for 140 GHz ECRH System on HL-2A[J]. Plasma Science and Technology, 2014, 16(3): 267-272. DOI: 10.1088/1009-0630/16/3/17 |
[7] | WANG Chao (王超), ZHOU Jun (周俊), HUANG Mei (黄梅), WANG He (王贺), CHEN Gangyu (陈罡宇), RAO Jun (饶军). ECRH Launcher for Four-Beam Injection on HL-2A Tokamak[J]. Plasma Science and Technology, 2013, 15(5): 476-479. DOI: 10.1088/1009-0630/15/5/16 |
[8] | HUANG Xianli (黄贤礼), SHI Zhongbing (石中兵), CUI Zhengying (崔正英), ZHONG Wulv (钟武律), DONG Yunbo (董云波), CHEN Chengyuan (陈程远), FENG Beibin (冯北滨), YAO Lianghua (姚良骅), LIU Zetian (刘泽田), DING Xuantong (丁玄同), et al. Heat Transport During H-Mode in the HL-2A Tokamak[J]. Plasma Science and Technology, 2013, 15(3): 221-224. DOI: 10.1088/1009-0630/15/3/06 |
[9] | HE Zhixiong, DONG Jiaqi, HE Hongda, JIANG Haibin, GAO Zhe, ZHANG Jinhua. MHD Equilibrium Configuration Reconstructions for HL-2A Tokamak[J]. Plasma Science and Technology, 2011, 13(4): 424-430. |
[10] | YAO Lianghua (姚良骅), ZHAO Dawei (赵大为), FENG Beibin (冯北滨), CHEN.Chengyuan (陈程远), ZHOU Yan(周艳), HAN Xiaoyu (韩晓玉), LI Yonggao (李永高), Jerome BUCALOSSI, Duan Xuru (段旭如). Comparison of Supersonic Molecular Beam Injection from both low field side and high field side of HL-2A[J]. Plasma Science and Technology, 2010, 12(5): 529-534. |
1. | Wu, T., Xu, M., Wang, Z. et al. Compatibility of pronounced detachment with improved confinement on HL-2A tokamak. Nuclear Fusion, 2025, 65(2): 026022. DOI:10.1088/1741-4326/ad9e04 | |
2. | Hao, G., Xu, J., Sun, Y. et al. Summary of the 11th Conference on Magnetic Confined Fusion Theory and Simulation. Plasma Science and Technology, 2024, 26(10): 101001. DOI:10.1088/2058-6272/ad5d8a | |
3. | Wu, N., Cheng, J., Yi, K.Y. et al. Facilitated core-edge integration through divertor nitrogen seeding in the HL-2A tokamak. Nuclear Fusion, 2024, 64(9): 096007. DOI:10.1088/1741-4326/ad5e96 | |
4. | Zhou, Y., Dudson, B., Wu, T. et al. One-dimensional simulation and validation of divertor detachment induced through nitrogen seeding on HL-2A. Plasma Physics and Controlled Fusion, 2024, 66(5): 055005. DOI:10.1088/1361-6587/ad30fc | |
5. | Long, T., Ke, R., Wu, T. et al. Studies of edge poloidal rotation and turbulence momentum transport during divertor detachment on HL-2A tokamak | [HL-2A 托卡马克偏滤器脱靶时边缘极向旋转和湍流动量输运]. Wuli Xuebao/Acta Physica Sinica, 2024, 73(8): 088901. DOI:10.7498/aps.73.20231749 | |
6. | Wu, T., Diamond, P.H., Nie, L. et al. How turbulent transport broadens the heat flux width: local SOL production or edge turbulence spreading?. Nuclear Fusion, 2023, 63(12): 126001. DOI:10.1088/1741-4326/acf5d9 |