Citation: | Longlong SANG, Quanming LU, Jinlin XIE, Qiaofeng ZHANG, Weixing DING, Yangguang KE, Xinliang GAO, Jian ZHENG. Experimental studies on the propagation of whistler-mode waves in a magnetized plasma structure with a non-uniform density[J]. Plasma Science and Technology, 2023, 25(9): 095301. DOI: 10.1088/2058-6272/acc502 |
Propagation of whistler-mode waves in a magnetized plasma structure is investigated in the Keda linear magnetized plasma device. The magnetized plasma structure has its density peak in the center, and the background magnetic field is homogeneous along the axial direction. A whistler-mode wave with a frequency of 0.3 times of electron cyclotron frequency (fce) is launched into the plasma structure. The wave normal angle (WNA) is about 25°, and the wavefront exhibits a wedge structure. During propagation of the whistler wave, both the propagating angle and WNA slowly approach zero, and then the wave is converged toward the center of the structure. Therefore, the wave tends to be trapped in the plasma structure. The results present observational evidence of the propagation of a whistler-mode wave trapped in the enhanced-density structure in a laboratory plasma. This trapping effect is consistent with satellite observations in the inner magnetosphere.
This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB 41000000), the Key Research Program of Frontier Sciences, CAS (No. QYZDJ-SSW-DQC010), and Fundamental Research Funds for the Central Universities (Nos. WK3420000006, WK3420000013, WK3420000017 and WK2080000135).
[1] |
Horne R B et al 2005 Nature 437 227 doi: 10.1038/nature03939
|
[2] |
Thorne R M et al 2013 Nature 504 411 doi: 10.1038/nature12889
|
[3] |
Burtis W J and Helliwell R A 1969 J. Geophys. Res. 74 3002 doi: 10.1029/JA074i011p03002
|
[4] |
Horne R B et al 2005 J. Geophys. Res. Space Phys. 110 A03225 doi: 10.1029/2004JA010811
|
[5] |
Gao X L et al 2014 Geophys. Res. Lett. 41 4805 doi: 10.1002/2014GL060707
|
[6] |
Lauben D S et al 2002 J. Geophys. Res. Space Phys. 107 1429 doi: 10.1029/2000JA003019
|
[7] |
LeDocq M J, Gurnett D A and Hospodarsky G B 1998 Geophys. Res. Lett. 25 4063 doi: 10.1029/1998GL900071
|
[8] |
Li W et al 2013 J. Geophys. Res. Space Phys. 118 1461 doi: 10.1002/jgra.50176
|
[9] |
Breuillard H et al 2012 Ann. Geophys. 30 1223 doi: 10.5194/angeo-30-1223-2012
|
[10] |
Lu Q M et al 2019 J. Geophys. Res. Space Phys. 124 4157 doi: 10.1029/2019JA026586
|
[11] |
Ke Y G et al 2021 Geophys. Res. Lett. 48e2020GL092305 doi: 10.1029/2020GL092305
|
[12] |
Ohta K et al 1996 Geophys. Res. Lett. 23 3301 doi: 10.1029/96GL03253
|
[13] |
Stenzel R L 1999 J. Geophys. Res. Space Phys. 104 14379 doi: 10.1029/1998JA900120
|
[14] |
Chen R et al 2021 J. Geophys. Res. Space Phys. 126 e2020JA028814 doi: 10.1029/2020JA028814
|
[15] |
Smith R L, Helliwell R A and Yabroff I W 1960 J. Geophys. Res. 65 815 doi: 10.1029/JZ065i003p00815
|
[16] |
Streltsov A V et al 2006 J. Geophys. Res. Space Phys. 111 A03216 doi: 10.1029/2005JA011357
|
[17] |
Chen L J et al 2020 Geophys. Res. Lett. 47 e2020GL089400 doi: 10.1029/2020GL089400
|
[18] |
Chen L J et al 2022 Geophys. Res. Lett. 49 e2021GL097559 doi: 10.1029/2021GL097559
|
[19] |
Laird M J and Nunn D 1975 Planet. Space Sci. 23 1649 doi: 10.1016/0032-0633(75)90092-6
|
[20] |
Karpman V I and Kaufman R N 1982 J. Plasma Phys. 27 225 doi: 10.1017/S0022377800026556
|
[21] |
Zaboronkova T M, Kudrin A V and Lyakh M Y 2003 Radiophys. Quant. Electron. 46 407 doi: 10.1023/A:1026371902173
|
[22] |
Koons H C 1989 J. Geophys. Res. 94 15393 doi: 10.1029/JA094iA11p15393
|
[23] |
Li W et al 2011 J. Geophys. Res. Space Phys. 116 A06206 doi: 10.1029/2010ja016313
|
[24] |
Stenzel R L and Urrutia J M 2016 Phys. Plasmas 23 082120 doi: 10.1063/1.4960666
|
[25] |
Stenzel R L 1976 Phys. Fluids 19 857 doi: 10.1063/1.861551
|
[26] |
Streltsov A V et al 2012 Phys. Plasmas 19 052104 doi: 10.1063/1.4719710
|
[27] |
Gekelman W et al 2011 Am. J. Phys. 79 894 doi: 10.1119/1.3591341
|
[28] |
Kostrov A V et al 2000 Phys. Scr. 62 51 doi: 10.1238/Physica.Regular.062a00051
|
[29] |
Urrutia J M and Stenzel R L 2014 Phys. Plasmas 21 122107 doi: 10.1063/1.4904354
|
[30] |
Stenzel R L 2019 Phys. Plasmas 26 080501 doi: 10.1063/1.5097852
|
[31] |
Sang L L et al 2022 Phys. Plasmas 29 102108 doi: 10.1063/5.0090790
|
[32] |
Fan F B et al 2019 Chinese Phys. Lett. 36 015201 doi: 10.1088/0256-307X/36/1/015201
|
[33] |
Urrutia J M and Stenzel R L 2015 Phys. Plasmas 22 092111 doi: 10.1063/1.4930105
|
[1] | Monzurul K AHMED, Om P SAH. Solitary kinetic Alfvén waves in dense plasmas with relativistic degenerate electrons and positrons[J]. Plasma Science and Technology, 2019, 21(4): 45301-045301. DOI: 10.1088/2058-6272/aaf20f |
[2] | Nimardeep KAUR, Kuldeep SINGH, Yashika GHAI, N S SAINI. Nonplanar dust acoustic solitary and rogue waves in an ion beam plasma with superthermal electrons and ions[J]. Plasma Science and Technology, 2018, 20(7): 74009-074009. DOI: 10.1088/2058-6272/aac37a |
[3] | Suyun ZHOU (周素云), Hui CHEN (陈辉), Yanfang LI (李艳芳). Breaking of a Langmuir wave in cold electron–positron–ion plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14008-014008. DOI: 10.1088/2058-6272/aa8cc0 |
[4] | Guiliang SONG (宋桂良), Huishan CAI (蔡辉山). Linear tearing modes in an electron-positron plasma[J]. Plasma Science and Technology, 2017, 19(4): 45002-045002. DOI: 10.1088/2058-6272/aa5801 |
[5] | Ding LU (陆丁), Ziliang LI (李子良), Haibo SANG (桑海波), Baisong XIE (谢柏松). Delicate scale multipeak and flat-top structures of solitary waves in multi-component plasmas[J]. Plasma Science and Technology, 2017, 19(3): 35002-035002. DOI: 10.1088/2058-6272/19/3/035002 |
[6] | Kalsoom AZRA, Muddasir ALI, Azhar HUSSAIN. Study of the O-mode in a relativistic degenerate electron plasma[J]. Plasma Science and Technology, 2017, 19(3): 35001-035001. DOI: 10.1088/2058-6272/19/3/035001 |
[7] | M G HAFEZ, N C ROY, M R TALUKDER, M HOSSAIN ALI. Ion acoustic shock and periodic waves through Burgers equation in weakly and highly relativistic plasmas with nonextensivity[J]. Plasma Science and Technology, 2017, 19(1): 15002-015002. DOI: 10.1088/1009-0630/19/1/015002 |
[8] | ZHU Zhenni(朱珍妮), WU Zhengwei(吴征威), LI Chunhua(李春华), YANG Weihong(杨维纮). Electron Acoustic Solitary Waves in Magnetized Quantum Plasma with Relativistic Degenerated Electrons[J]. Plasma Science and Technology, 2014, 16(11): 995-999. DOI: 10.1088/1009-0630/16/11/01 |
[9] | ZHANG Liping(张丽萍), SU Junyan(苏俊燕), LI Yanlong(李延龙). Propagation of Nonlinear Solitary Waves in Nonuniform Dusty Plasmas with Two-Ion Temperature[J]. Plasma Science and Technology, 2014, 16(3): 177-181. DOI: 10.1088/1009-0630/16/3/01 |
[10] | M. MAHDAVI, A. GHOLAMI. Ignition Conditions for Simulated Fuel Pellets in Degenerate Plasma[J]. Plasma Science and Technology, 2013, 15(4): 323-328. DOI: 10.1088/1009-0630/15/4/04 |